The relationship between the electrochemical behavior and the arrangement of lithium/vacancies has been investigated with electrochemical Li removal in Li(x)M(y)Mn(2-y)O4 (x < or = 1.0, 0.0 < or = y < or = 0.3, M = Co, Cr). It was shown that the electrochemical removal proceeds via two voltage regions: (1) approximately 3.9 V at x > or = approximately 0.5 and (2) approximately 4.2 V at x < or = approximately 0.5. To understand the stepwise behavior, entropy measurement of reaction, DeltaS(obs), was performed by using the electrochemical methods. The changes of the sign in deltaS(obs) from negative to positive at the composition x approximately 0.50 in Li(x)M(y)Mn(2-y)O4 indicated that the ordered arrangement of Li/vacancies was formed with electrochemical Li removal. Moreover, such an ordering was suppressed by the substitution of Co3+ and Cr3+ for Mn3+. To clarify the nature and origin of Li/vacancy ordering, the Monte Carlo simulation was performed in view of Coulombic interaction. The simulation reproduced the formation of a new phase arising from Li/vacancy ordering at x = 0.50 in Li(x)Mn2O4. In addition, the ordered arrangement of Li/vacancy at x = 0.5 was perturbed by the trivalent M3+ replacement in spinel structure due to the local clustering of Li+ around M3+. Consequently, the electrochemical behavior in spinel LiMn2O4 was deeply related to the Coulombic interactions, proved by the fact that experimentally observed changes in entropy agreed well with Monte Carlo simulation based on the Coulombic interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp056334y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!