One-dimensional ZnO nanostructure arrays such as nanowires, nanonails, and nanotrees, have been synthesized by oxygen assisted thermal evaporation of metallic zinc on a quartz substrate over a large area. Morphological evolution of ZnO nanostructures at different time scales and different positions of the substrates have been studied by electron microscopy. A self-catalyzed vapor-liquid-solid (VLS) process is believed to be responsible for the nucleation and subsequently a vapor-solid process is operative for further longitudinal growth. The photoluminescence spectrum showed a weak UV and a broad green emission peak at 3.25 and 2.49 eV, respectively. The latter was attributed to the presence of zinc interstitial defects. Electrical resistivity as a function of temperature showed activated mechanisms to be present. The electrical response of the ZnO nanonail arrays to different gases (CO, NO2, and H2S) indicated that there could be possible application as gas sensors for this material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp056673r | DOI Listing |
Sensors (Basel)
November 2024
Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
Semiconducting metal oxides with nanofiber (NF) morphologies are among the most promising materials for the realization of gas sensors. In this study, we have prepared electrospun ZnO-NiO composite NFs with different amounts of NiO (0, 20, 40, 60 and 80% wt%) for the systematic study of ethanol gas sensing. The fabricated composite NFs were annealed at 600 °C for crystallization.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Electrical and Electronic Engineering, Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur 2012, Bangladesh.
The main focus of this research is to explore the properties and photovoltaic application of AgCdF, and hence, initially, the CASTEP software was used in this study to assess the structural, optical, mechanical, and electrical characteristics of the AgCdF perovskite absorber layer within the context of the density functional theory (DFT) method. AgCdF resulting from the structural research is confirmed to be chemically and thermodynamically stable by the estimated tolerance factor and formation enthalpy. According to the band structure analysis, AgCdF is an indirect band gap semiconductor with a band gap of 1.
View Article and Find Full Text PDFNanoscale
November 2024
Instituto Interdisciplinario de Ciencias Básicas (ICB-CONICET), Universidad Nacional de Cuyo, Mendoza 5502, Argentina.
Zinc oxide nanowires (ZnO NWs) possess a unique one-dimensional (1D) morphology that offers a direct pathway for charge transport. In this article, we present the first application of the real-time time-dependent density functional tight-binding (real-time TD-DFTB) method for a model hybrid system consisting of a catechol molecule adsorbed on a ZnO nanowire. The rationalization of the photoinduced electron injection to the 1D nanostructure is attained through quantum dynamics simulations, stressing the role of charge transfer in the new optical transitions upon dye adsorption.
View Article and Find Full Text PDFBME Front
September 2024
Departamento de Materiales de Baja Dimensionalidad, Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, C.P. 04510, Mexico City, México.
We conducted a comprehensive physicochemical analysis of one-dimensional ZnO nanowires (1DZnO), incorporating anti-CYFRA 21-1 immobilization to promote fast optical biomarker detection up to 10 ng ml. This study highlights the effectiveness of proof-of-concept 1DZnO nanoplatforms for rapid cancer biomarker detection by examining the nanoscale integration of 1DZnO with these bioreceptors to deliver reliable photoluminescent output signals. The urgent need for swift and accurate prognoses in healthcare settings drives the rise of sensitive biosensing nanoplatforms for cancer detection, which has benefited from biomarker identification.
View Article and Find Full Text PDFSensors (Basel)
September 2024
Department of Electronic Engineering, Feng-Chia University, Taichung 40724, Taiwan.
Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!