Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence.

Lasers Surg Med

Department of Oral Pathology, São Paulo, São Paulo, Brazil 05508-900.

Published: April 2006

Background And Objectives: We have previously shown that phototherapy increases cell growth and impairs protein secretion of fibroblasts. Our objective was to study the effect of phototherapy on osteoblast-like cells in culture treated with dexamethasone.

Study Design/materials And Methods: Rat calvaria osteoblast-like cells were previously treated or not with dexamethasone and then, they were irradiated or not with a GaAlAs diode laser (wavelength of 780 nm, 10 mW, 3 J/cm2). Adhesion, proliferation, and osteonectin synthesis were analyzed.

Results: Phototherapy increased the proliferation rate of cells independently of dexamethasone presence. Adhesion and osteonectin synthesis were not significantly influenced by laser and/or dexamethasone.

Conclusions: Based on the conditions of this study we concluded that phototherapy acts as a proliferative stimulus on osteoblast-like cells, even under the influence of dexamethasone. Thus, we suggest that phototherapy can be of importance as co-adjuvant in bone clinical manipulation in order to accelerate bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.20298DOI Listing

Publication Analysis

Top Keywords

osteoblast-like cells
12
proliferation rate
8
independently dexamethasone
8
dexamethasone presence
8
osteonectin synthesis
8
phototherapy
5
irradiation 780
4
780 increases
4
increases proliferation
4
rate osteoblasts
4

Similar Publications

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Grana Padano (GP) is an Italian hard cooked cheese characterized by a long ripening process and high protein and Ca contents. After in vitro static simulated gastrointestinal digestion, GP digest contained caseinophosphopeptides that were 6 to 24 amino acids in length, including tri-phosphorylated species incorporating the pSer-pSer-pSer-Glu-Glu cluster. Using rat ileum tissue, the digest was used to assess Ca absorption ex vivo, which showed significantly better results for the GP digest in comparison to the CaCO aqueous solution.

View Article and Find Full Text PDF

Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane).

ACS Appl Bio Mater

January 2025

Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.

Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness.

View Article and Find Full Text PDF

Objective: This in vitro study aimed to analyze the effects of ionizing radiation on immortalized human osteoblast-like cells (SaOS-2) and further assess their cellular response in co-culture with fibroblasts. These analyses, conducted in both monoculture and co-culture, are based on two theoretical models of osteoradionecrosis - the theory of hypoxia and cellular necrosis and the theory of the radiation-induced fibroatrophic process.

Design: SaOS-2 cells were exposed to ionizing radiation and evaluated for cell viability, nitric oxide (NO) production, cellular morphology, wound healing, and gene expression related to the PI3K-AKT-mTOR pathway.

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!