The dependence of some molecular motions in the enzyme 1,3-1,4-beta-glucanase from Bacillus licheniformis on temperature changes and the role of the calcium ion in them were explored. For this purpose, two molecular dynamics simulated trajectories along 4 ns at low (300 K) and high (325 K) temperatures were generated by the GROMOS96 package. Several structural and thermodynamic parameters were calculated, including entropy values, solvation energies, and essential dynamics (ED). In addition, thermoinactivation experiments to study the influence of the calcium ion and some residues on the activity were conducted. The results showed the release of the calcium ion, which, in turn, significantly affected the movements of loops 1, 2, and 3, as shown by essential dynamics. These movements differ at low and high temperatures and affect dramatically the activity of the enzyme, as observed by thermoinactivation studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-006-0110-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!