Perfusion magnetic resonance imaging (pMRI) is an important tool in assessing tumor angiogenesis for the early detection of lung cancer. This study presents a novel integrated framework for spatio-temporal modeling of pulmonary nodules in pMRI image sequences. After localizing a nodule region in each image, we perform segmentation in the region to extract the nodule boundary, then use thin-plate spline interpolation for nodule registration along the temporal dimension. The resulting spatio-temporal model can lead to many types of nodule characterization, e.g. a time-intensity profile of a nodule region, and be used to capture important angiogenic patterns in the lung that can distinguish between cancer and benign nodules and assist in early detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.15.4.1085 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!