Although it has been shown that the cross-talk between osteoblasts and tumor cells stimulates proliferation and invasion of prostate carcinoma (PCa) cells, the molecular mechanisms underlying this event are largely unknown. In this study, we demonstrated that the PCa cells, PC3, derived from bone metastasis, undergo changes of their invasive capability if grown in the presence of osteoblast-derived conditioned media (OBCM). Specifically, they were able to organize tridimensional structures in Matrigel, such as large branching colonies, tube-like structures and clusters of proliferating cells, after treatment. At the ultrastructural level, we observed that PC3 cells grown in the presence of OBCM presented an increment of membrane activity with a blast of shed membrane vesicles from the cell surface. After 6 h of incubation, protein content was approximately 5-fold more elevated in vesicles isolated from PC3 cells cultured in OBCM than in unstimulated cultures. Gelatin zymography of vesicles collected from OBCM-treated PC3 cells showed an increment of lytic bands of MMP family members identified as pro-enzymatic and active forms of gelatinase A (MMP-2) and gelatinase B (MMP-9). By casein-plasminogen zymography, this latter culture also presented an elevated level of high-molecular weight urokinase plasminogen activator (HMW-uPA). Purified vesicles from OBCM-treated PC3 cells incubated with Matrigel cleaved its components more efficiently than vesicles from untreated PC3 cells. Collectively, these findings indicate that osteoblasts produce factor/s able to modify the invasive capability of prostate cancer cells, increasing the amount of shed vesicles and of their associated lytic enzymes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pc3 cells
20
cells
11
prostate cancer
8
cancer cells
8
pca cells
8
invasive capability
8
grown presence
8
obcm-treated pc3
8
pc3
6
vesicles
6

Similar Publications

Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.

View Article and Find Full Text PDF

Fungal specialized metabolites are known for their potent biological activities, among which tropolone sesquiterpenoids (TS) stand out for their diverse bioactivities. Here, we report cytotoxic and proliferation inhibitory effects of the recently discovered TS compounds 4-hydroxyxenovulene B and 4-dihydroxy norpycnidione, and the structurally related 4-hydroxy norxenovulene B and xenovulene B. Inhibition of metabolic activity after TS treatment was observed in Jurkat, PC-3 and FAIK3-5 cells, whereas MDA-MB-231 cells were unresponsive to treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Detecting circulating tumor cells (CTCs) is tough because they are present in low numbers and vary in characteristics, with traditional methods struggling for those with low EpCAM expression.
  • This study introduces a new approach using silica-coated magnetic nanobeads with streptavidin for better CTC capture.
  • The new method showed higher capture rates for specific cancer cell lines, especially those with low EpCAM expression, indicating its potential for improving CTC detection compared to existing commercial options.
View Article and Find Full Text PDF

Nine new structurally diverse filicinic acid-based meroterpenoids (-) with four kinds of carbon skeletons were isolated from the rhizomes of . Their structures, including the absolute configurations, were elucidated by comprehensive analysis of spectroscopic data, quantum chemical calculations, and single-crystal X-ray diffraction. Structurally, compounds - feature an unprecedented 6/6/5/6/6/6 hexacyclic system with a rare oxaspiro[4.

View Article and Find Full Text PDF

Targeting more than one in nine men before age 70, prostate cancer is the most common type of cancer in men. The increased levels of cyclins, leading to activation of cyclin-dependent kinases (CDKs), play a critical role in the increased proliferation of prostate cancer cells. In this study, the regulation of the cyclin D1 (CCND1) promoter activity by activator protein-1 (AP-1) and SRY-related HMG-box (SOX) transcription factors has been characterized in PC3 prostate cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!