A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. | LitMetric

Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid.

Nature

Paul Scherrer Institut, Laboratory of Radio- and Environmental Chemistry, CH-5232 Villigen, Switzerland.

Published: March 2006

Nitrous acid is a significant photochemical precursor of the hydroxyl radical, the key oxidant in the degradation of most air pollutants in the troposphere. The sources of nitrous acid in the troposphere, however, are still poorly understood. Recent atmospheric measurements revealed a strongly enhanced formation of nitrous acid during daytime via unknown mechanisms. Here we expose humic acid films to nitrogen dioxide in an irradiated tubular gas flow reactor and find that reduction of nitrogen dioxide on light-activated humic acids is an important source of gaseous nitrous acid. Our findings indicate that soil and other surfaces containing humic acid exhibit an organic surface photochemistry that produces reductive surface species, which react selectively with nitrogen dioxide. The observed rate of nitrous acid formation could explain the recently observed high daytime concentrations of nitrous acid in the boundary layer, the photolysis of which accounts for up to 60 per cent of the integrated hydroxyl radical source strengths. We suggest that this photo-induced nitrous acid production on humic acid could have a potentially significant impact on the chemistry of the lowermost troposphere.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature04603DOI Listing

Publication Analysis

Top Keywords

nitrous acid
32
nitrogen dioxide
16
humic acid
16
acid
12
reduction nitrogen
8
nitrous
8
hydroxyl radical
8
humic
5
photosensitized reduction
4
nitrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!