Significantly more carbon is stored in the world's soils--including peatlands, wetlands and permafrost--than is present in the atmosphere. Disagreement exists, however, regarding the effects of climate change on global soil carbon stocks. If carbon stored belowground is transferred to the atmosphere by a warming-induced acceleration of its decomposition, a positive feedback to climate change would occur. Conversely, if increases of plant-derived carbon inputs to soils exceed increases in decomposition, the feedback would be negative. Despite much research, a consensus has not yet emerged on the temperature sensitivity of soil carbon decomposition. Unravelling the feedback effect is particularly difficult, because the diverse soil organic compounds exhibit a wide range of kinetic properties, which determine the intrinsic temperature sensitivity of their decomposition. Moreover, several environmental constraints obscure the intrinsic temperature sensitivity of substrate decomposition, causing lower observed 'apparent' temperature sensitivity, and these constraints may, themselves, be sensitive to climate.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature04514DOI Listing

Publication Analysis

Top Keywords

temperature sensitivity
20
soil carbon
12
climate change
12
sensitivity soil
8
carbon decomposition
8
carbon stored
8
intrinsic temperature
8
carbon
6
decomposition
6
temperature
5

Similar Publications

Worldwide, many coastal freshwater ecosystems suffer from seawater intrusion. In addition to this stressor, it is likely that the biota inhabiting these ecosystems will also need to deal with climate change-related temperature fluctuations. The resilience of populations to long-term exposure to these stressors will depend on their genetic diversity, a key for their adaptation to changing environments.

View Article and Find Full Text PDF

Radon on Mars and the Moon derived from Martian and lunar meteorites.

Sci Rep

January 2025

Institut de Recherche en Astrophysique et Planétologie, UPS/CNRS/CNES, F-31400, Toulouse, France.

The radioactive gas radon-222, a fluid and aerosol tracer in Earth's lithosphere and atmosphere, can also reveal subtle rock physics processes in extraterrestrial environments, such as those involving water, but remains poorly constrained in planetary bodies due to the limited number of samples available. Here we measure the effective radium-226 concentration (EC) of six Martian and nine lunar meteorites to derive radon source terms for Martian and lunar rocks. EC values are 0.

View Article and Find Full Text PDF

Enthalpy driven temperature-sensitive conformational changes in a metamorphic protein involved in the cyanobacterial circadian clock.

Int J Biol Macromol

January 2025

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China. Electronic address:

Metamorphic proteins switch reversibly between distinctly different folds often with different functions under physiological conditions. Here, the kinetics and thermodynamics of the fold-switching at different temperatures in a metamorphic protein, KaiB, involved in cyanobacterial circadian clock, reveal that enthalpy-driven the fold-switching to form fold-switched KaiB (fsKaiB) and the fsKaiB and ground-state KaiB (gsKaiB) are more dominantly at lower and higher temperatures, respectively. Thermodynamic analysis indicates that conformational and solvent entropy have opposing effects on KaiB's fold-switching.

View Article and Find Full Text PDF

Pathogen nucleic acid detection technology based on isothermal amplification and CRISPR/Cas12a system offers advantages in terms of high sensitivity, high specificity, and rapidity. However, this method has not been widely applied because of its shortcomings in utilizing conventional instruments, which cannot satisfy the requirements for Point of Care Testing (POCT), such as integration, convenience, and miniaturization. In this study, we developed an integrated lift-heater centrifugal microfluidic platform (Lift-CM) to automate the processes of isothermal amplification and CRISPR/Cas12a detection.

View Article and Find Full Text PDF

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!