Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is little information on bone morphology as it relates to shoulder activities. This study investigated how loads corresponding to functional shoulder activities affect the trabecular architecture of the glenoid. Two different protocols were used. Protocol 1 investigated the material and morphological characteristics of the glenoid by analyzing digitized trabecular bone images obtained from 12 cadaver scapula specimens. Protocol 2 used a finite element analysis (FEA) to compute the principal stress trajectories acting within the glenoid. The principal stresses were derived for five loading conditions, which represent typical functional shoulder activities. The study showed that shoulder activity involved in carrying a light load makes the greatest contribution to the trabecular architecture compared with other shoulder activities considered in this study (p<0.05). With all of the activities considered in this study, the lateral region, particularly in the anterior and posterior portions, showed greater deviation and greater sensitivity to variation under loading conditions than did the other regions (p<0.05). These results suggest that owing to the extra sensitivity of the anterior and posterior parts of the lateral region, these regions may be more informative in the analysis of the trabecular architecture following shoulder musculoskeletal injuries. These results may provide essential design information for shoulder prostheses and contribute to an understanding of morphological changes resulting from injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.2165698 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!