Tonic finite element model of the lower limb.

J Biomech Eng

Laboratoire de Biomécanique Appliquée, UMRT24 INRETS/Université de la Méditerranée, Faculté de Medecine secteur nord, Bld Pierre Dramard, 13916 Marseille, France.

Published: April 2006

It is widely admitted that muscle bracing influences the result of an impact, facilitating fractures by enhancing load transmission and reducing energy dissipation. However, human numerical models used to identify injury mechanisms involved in car crashes hardly take into account this particular mechanical behavior of muscles. In this context, in this work we aim to develop a numerical model, including muscle architecture and bracing capability, focusing on lower limbs. The three-dimensional (3-D) geometry of the musculoskeletal system was extracted from MRI images, where muscular heads were separated into individual entities. Muscle mechanical behavior is based on a phenomenological approach, and depends on a reduced number of input parameters, i.e., the muscle optimal length and its corresponding maximal force. In terms of geometry, muscles are modeled with 3-D viscoelastic solids, guided in the direction of fibers with a set of contractile springs. Validation was first achieved on an isolated bundle and then by comparing emergency braking forces resulting from both numerical simulations and experimental tests on volunteers. Frontal impact simulation showed that the inclusion of muscle bracing in modeling dynamic impact situations can alter bone stresses to potentially injury-inducing levels.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.2165700DOI Listing

Publication Analysis

Top Keywords

muscle bracing
8
mechanical behavior
8
muscle
5
tonic finite
4
finite element
4
element model
4
model lower
4
lower limb
4
limb admitted
4
admitted muscle
4

Similar Publications

Knee exoskeletons have been developed to assist, stabilize, or improve human movement or recovery. However, exoskeleton designers must implement transparency (i.e.

View Article and Find Full Text PDF

Knee bracing is commonly used for rehabilitation after ligament surgery. However, the effectiveness of knee bracing in preventing ligament injuries is not widely studied. This study aimed to develop a computational methodology to investigate the effectiveness of a novel type of cable-stabilized knee brace on anterior cruciate ligament (ACL) strain during single-leg jump landing.

View Article and Find Full Text PDF

We sought to examine how resistance training (RT) status in young healthy individuals, either well resistance trained (T, n=10) or untrained (UT, n=11), affected molecular markers with leg immobilization followed by recovery RT. All participants underwent two weeks of left leg immobilization via a locking leg brace. Afterwards, all participants underwent eight weeks (3 d/week) of knee extensor focused progressive RT.

View Article and Find Full Text PDF

Orthopedic surgery and traumatology necessitate cost-effective approaches that can be replicated across multiple venues. Finite Element (FE) simulation models have evolved as a solution, allowing for consistent investigations into biomechanical systems. Finite Element Analysis (FEA), which began in the 1950s aviation industry, has since expanded into orthopedics.

View Article and Find Full Text PDF

Direct repair of ulnar collateral ligament (UCL) injuries with suture augmentation has been successful in properly selected patients lacking chronic attritional wear of the medial elbow. Described is a Speed-Fix technique for direct UCL repair using SutureTape, with Brace augmentation. The Speed-Fix repair technique uses an inverted mattress knotless repair with a knotless SwiveLock anchor and FiberTape suture, which allows for theoretical compression at the repair site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!