Recent studies show that quantitative and qualitative differences in amyloid beta (Abeta ) peptides may be implicated in the development of Alzheimer's disease. New evidence seems to support the existence of a dynamic equilibrium between Abeta peptide in the brain and peripheral blood circulation. The quantitation of Abeta in the blood may allow the development of the potential value of Abeta peptides as a biomarker in the development of Alzheimer's disease. In this communication, quantitation of Abeta peptides using high-performance liquid chromatography coupled with tandem mass spectrometry in a linear ion trap mode is presented. RP-HPLC was performed using a Waters Xterra MS C8 column (3.0 mm x 150 mm). Abeta(1-40) peptide was eluted using a gradient elution program. Eluate from the RP-HPLC column was split to both the UV detector and electrospray ionization MS source. The product ion scan was performed in a linear ion trap mode utilizing the transition of a multiply charged molecular ion of Abeta(1-40) to a singly charged product ion. The detection limit of 31.25 ng in column load using a 3.0-mm-diameter conventional C8 column was achieved. The Abeta(1-40) standard calibration curves show excellent linearity from 34 ng to 2500 ng Abeta(1-40) of column sample load. The product ion scan enhances sensitivity 10 times compared with the best previously achieved by a single-quadrupole instrument in the selective ion monitoring mode. Moreover, the product ion scan of Abeta(1-40) provides superior selectivity and specificity, which is very important in the quantitation of Abeta(1-40) in a complex biological matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291744PMC

Publication Analysis

Top Keywords

product ion
16
alzheimer's disease
12
abeta peptides
12
ion scan
12
high-performance liquid
8
liquid chromatography
8
chromatography coupled
8
coupled tandem
8
tandem mass
8
mass spectrometry
8

Similar Publications

Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.

View Article and Find Full Text PDF

Mitigation of Self-p-Doping and Off-Centering Effect in Tin Perovskite via Strontium Doping.

ACS Energy Lett

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany.

Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereochemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material.

View Article and Find Full Text PDF

Degradation products of magnesium implant synergistically enhance bone regeneration: Unraveling the roles of hydrogen gas and alkaline environment.

Bioact Mater

April 2025

Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Biodegradable magnesium (Mg) implant generally provides temporary fracture fixation and facilitates bone regeneration. However, the exact effects of generated Mg ions (Mg), hydrogen gas (H), and hydroxide ions (OH) by Mg degradation on enhancing fracture healing are not fully understood. Here we investigate the degradation of Mg intramedullary nail (Mg-IMN), revealing the generation of these degradation products around the fracture site during early stages.

View Article and Find Full Text PDF

A free calcium ion in the cytosol is essential for many physiological and physical functions. Also, it is known as a second messenger as the quantity of free calcium ions is an essential part of brain signaling. In this work, we have attempted to study calcium signaling in the presence of mitochondria, buffer, and endoplasmic reticulum fluxes.

View Article and Find Full Text PDF

Evaluating the effects of sodium metabisulfite on the cognitive and motor function in .

Narra J

December 2024

Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines.

Sodium metabisulfite is widely used as a preservative in many food and beverage products, yet its potential effects on cognitive and motor functions at low concentrations remain poorly understood. Evaluating learning, short-term memory, and motor activity is essential, as these functions are critical indicators of neurological health and could be impacted by low-level exposure to sodium metabisulfite. The aim of this study was to investigate the effects of sublethal concentrations of sodium metabisulfite on cognitive and motor functions using (fruit flies) as the model organism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!