Involvement of brain-derived neurotrophic factor in the regulation of hypothalamic somatostatin in vivo.

J Endocrinol

Molecular Mechanisms in Neurodegenerative Dementia Laboratory, U710 Inserm, University of Montpellier 2, EPHE, Place E Bataillon, 34095 Montpellier, France.

Published: March 2006

Brain-derived neurotrophic factor (BDNF) has been extensively studied in the central nervous system as a survival and differentiation factor and in plasticity processes. In vitro, BDNF has been shown to stimulate cellular differentiation and neurohormones synthesis and release. We demonstrated that BDNF is a potent and specific stimulatory agent of somatostatin (SRIH) synthesis in primary cultures of hypothalamic neurons. However, less information is available about its function on SRIH neurons in vivo. In the present study, we examined the effect of in vivo intracerebroventricular BDNF administration in adult non-anesthetized male rats. Two distinct experimental approaches were used: acute intracerebroventricular injection and long-term (14 days) continuous infusion (Alzet micro-pumps). We demonstrate that single intracerebroventricular BDNF injections (5 microg/rat) induce an early (60 and 180 min) decrease in the SRIH mRNA signal in the hypothalamic periventricular nucleus (PeVN) accompanied by a decrease of the hypothalamic SRIH content. 48 h after the acute injection, SRIH mRNA levels and peptide content strongly and significantly increased. After continuous intracerebroventricular BDNF administration (12 microg/day for 14 days), a significant increase in the SRIH hypothalamic content was observed. Nevertheless, the increase in peptide content was not correlated with a similar increase in the PeVN messenger level. These findings show the involvement of BDNF in the in vivo regulation of somatostatinergic neurons in adult rats, which clearly differs according to the BDNF administration mode.

Download full-text PDF

Source
http://dx.doi.org/10.1677/joe.1.06578DOI Listing

Publication Analysis

Top Keywords

intracerebroventricular bdnf
12
bdnf administration
12
brain-derived neurotrophic
8
neurotrophic factor
8
bdnf
8
srih mrna
8
peptide content
8
srih
6
hypothalamic
5
involvement brain-derived
4

Similar Publications

Fluctuations in kynurenic acid (KYNA) and brain-derived neurotrophic factor (BDNF) levels in the brain reflect its neurological status. The aim of the study was to investigate the effect of transiently elevated KYNA concentrations in the cerebroventricular circulation on the expression of BDNF and its high-affinity tropomyosin-related kinase receptor B (TrkB) in specific structures of the sheep brain. Intracerebroventricularly cannulated anestrous sheep were subjected to a series of four 30 min infusions of KYNA: 4 × 5 μg/60 μL/30 min (KYNA20, = 6) and 4 × 25 μg/60 μL/30 min (KYNA100, = 6) or a control infusion ( = 6), at 30 min intervals.

View Article and Find Full Text PDF
Article Synopsis
  • Ipriflavone (IPRI) is used to prevent postmenopausal bone loss and offers antioxidant and cognitive benefits, but it has low bioavailability due to poor solubility.
  • In this study, IPRI was formulated into targeted poly-lactic-co-glycolic acid (PLGA) nanoparticles with Tet-1 peptide to enhance its therapeutic effects in a rat model of Alzheimer's disease (AD), exacerbated by streptozotocin (STZ) injections.
  • Results showed that IPRI nanoparticles were more effective than free IPRI in reducing cognitive dysfunction, oxidative stress, and neurodegenerative changes, leading to improved neuronal cell viability and reduced Alzheimer's
View Article and Find Full Text PDF

Introduction: Autism is a neurodevelopmental disorder associated with mitochondrial dysfunction, apoptosis, and neuroinflammation. These factors can lead to the overactivation of c-JNK and p38MAPK.

Methods: In rats, stereotactic intracerebroventricular (ICV) injection of propionic acid (PPA) results in autistic-like characteristics such as poor social interaction, repetitive behaviours, and restricted communication.

View Article and Find Full Text PDF
Article Synopsis
  • The brain's Renin-Angiotensin System, particularly through the action of angiotensin (Ang) converting enzyme (ACE) 2 and Ang (1-7), is linked to mood regulation and potential antidepressant effects.
  • In a study with olfactory bulbectomized (OBX) mice, the ACE inhibitor Captopril (Cap) was found to reduce depressive-like behaviors in these mice, as it increased levels of Ang (1-7) and other neuroprotective factors in the hippocampus.
  • The antidepressant effects of Cap and Ang (1-7) were inhibited when specific receptors were blocked, indicating that these pathways are crucial for the observed mood improvements.
View Article and Find Full Text PDF

Autism spectrum disorder is a neurodevelopmental disorder in which learning, communication, and social interaction are impaired. Research has sought to minimize the neural impairments associated with autism spectrum disorder and improve the quality of life. Recent studies suggest that boron may benefit nerve cells, with effects varying depending on the dosage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!