Background: Matrix metalloproteinase 9 (MMP-9) and its tissue inhibitor of metalloproteinase 1 (TIMP-1) are hypothesized to play a role in the pathogenesis of airway remodeling in asthma.

Objective: We have used a mouse model of airway remodeling to determine the pattern of expression of MMP-9 and TIMP-1 in airway epithelium and peribronchial cells, and assess whether TIMP-1, an inhibitor of MMP-9, is expressed at the same sites in the airway. In addition, we have investigated whether immunostimulatory sequences (ISSs) of DNA modulate levels of expression of MMP-9, TIMP-1, and peribronchial fibrosis.

Methods: Levels of lung MMP-9 and TIMP-1 were assessed by zymography, ELISA, and immunohistochemistry.

Results: Repetitive ovalbumin challenge induced a significant increase in levels of MMP-9, TIMP-1, and peribronchial collagen deposition. The pattern of expression of MMP-9 and TIMP-1 in the remodeled airway was significantly different. MMP-9 but not TIMP-1 was expressed in airway epithelium, whereas both MMP-9 and TIMP-1 were expressed in peribronchial inflammatory cells. ISS significantly reduced expression of MMP-9 in airway epithelium (which immunostained positive for Toll receptor 9), as well as in peribronchial inflammatory cells. In vitro studies demonstrated that ISS inhibited bone marrow macrophage generation of MMP-9.

Conclusion: Allergen-induced peribronchial fibrosis is associated with expression of MMP-9 and TIMP-1 at different anatomical sites in the remodeled airway. The ability of ISS to inhibit the expression of MMP-9 in airway epithelium (a site where its inhibitor TIMP-1 is not induced by allergen challenge) may be important in determining whether ISS contributes to reductions in airway remodeling by reducing levels of MMP-9.

Clinical Implications: Immunostimulatory sequences of DNA, which are being investigated as novel therapeutics in asthma, inhibit airway remodeling in mice as well as epithelial expression of MMP-9, an enzyme that degrades the extracellular matrix proteins surrounding the airway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2005.12.1324DOI Listing

Publication Analysis

Top Keywords

mmp-9 timp-1
32
expression mmp-9
28
airway epithelium
20
airway remodeling
16
airway
13
mmp-9
13
timp-1
11
expression
8
associated expression
8
matrix metalloproteinase
8

Similar Publications

Introduction: This study aimed to analyze the levels of MMP-9 and TIMP-1 as biomarkers for identifying lung anatomical and functional abnormalities in coronavirus disease 2019 (COVID-19).

Methodology: Adult COVID-19 patients hospitalized between October and December 2021 were included in the study. MMP-9 and TIMP-1 levels were measured from the blood.

View Article and Find Full Text PDF

A Study on Endometrial Polyps Recurrence Post-Hysteroscopic Resection: Identification of Influencing Factors and Development of a Predictive Model.

Ann Ital Chir

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, 322000 Yiwu, Zhejiang, China.

Aim: This study aimed to explore influencing factors and develop a predictive model of endometrial polyps (EP) recurrence after hysteroscopic resection.

Methods: This retrospective study included 180 patients who underwent hysteroscopic resection for EP between January 2021 to December 2023. The patients were divided into a modeling group (n = 135) and a validation group (n = 45) in a 3:1 ratio.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are M2 macrophage markers that are modulated by inflammation. A disintegrin and metalloproteinases (ADAMS) and those with thrombospondin motifs (ADAMTS) regulate the shedding of membrane-bound proteins, growth factors, cytokines, ligands, and receptors; MMPs, ADAMS, and ADAMTS may be regulated by tissue inhibitors of metalloproteinases (TIMPs). This study aimed to determine whether these interacting proteins were dysregulated in PCOS.

View Article and Find Full Text PDF

Airway MMP-12 and DNA methylation in COPD: an integrative approach.

Respir Res

January 2025

Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, 901 87, Umeå, Sweden.

Background: In COPD, the balance between matrix metalloproteinases (MMPs) and their natural inhibitors [tissue inhibitors of metalloproteinases (TIMPs)] is shifted towards excessive degradation, reflected in bronchoalveolar lavage (BAL) as increased MMP concentrations. Because of their critical role in lung homeostasis, MMP activity is tightly regulated, but to what extent this regulation occurs through epigenetic mechanisms remains unknown.

Methods: To explore the interplay between MMPs, TIMPs, and DNA methylation (DNAm) we (1) analysed MMP-9, -12, and TIMP-1 concentrations in BAL fluid, and profiled DNAm in BAL cells from 18 COPD and 30 control subjects, (2) estimated protein-COPD relationships using multivariable regression, (3) identified protein quantitative trait methylation loci (pQTMs) with COPD as a potential modifier in a separate interaction model, and (4) integrated significant interactions with a previous COPD GWAS meta-analysis.

View Article and Find Full Text PDF

Equine endometrosis is a major cause of infertility in mares and is characterized by degenerative, functional and fibrotic changes in the endometrium with increased collagen (COL) deposition. Transforming growth factor (TGF)-β1 is one of the major pro-fibrotic factors involved in the excessive deposition of extracellular matrix (ECM) components in the equine endometrium. It has been demonstrated that ovarian steroids, specifically 17β-estradiol (E2) and progesterone (P4), not only regulate the cyclicity of the estrous cycle, but also have been implicated as anti- or pro-fibrotic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!