In order to expand the repertoire of somatosensory functions that can be effectively studied through functional MRI, we have developed a tactile stimulator which can deliver rich and varied combinations of stimulation that simulate natural tactile exploration. The system is computer controlled and compatible with an MRI environment. Complex aspects of somesthesis can thus be studied independent of confounds introduced by motor activity or problems with precision, accuracy or reproducibility of stimulus delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2006.01.018DOI Listing

Publication Analysis

Top Keywords

tactile stimulator
8
helix multi-modal
4
multi-modal tactile
4
stimulator human
4
human functional
4
functional neuroimaging
4
neuroimaging order
4
order expand
4
expand repertoire
4
repertoire somatosensory
4

Similar Publications

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.

Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.

View Article and Find Full Text PDF

: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.

View Article and Find Full Text PDF

Effect of photobiomodulation on dentin hypersensitivity: a randomized controlled double-blind clinical trial.

Clin Oral Investig

January 2025

Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 239/245, São Paulo, SP, CEP 01504-000, Brazil.

Objectives: To investigate if photobiomodulation (PBM) can reduce dentin hypersensitivity (DH) through a randomized, controlled, double-blind clinical trial.

Materials And Methods: One hundred and twelve patients experiencing DH after non-surgical scaling and root planing (SRP) were enrolled and divided into the Experimental Group - SRP + PBM (660 nm, 1.061 J/cm²) and the Control Group - SRP + PBM simulation.

View Article and Find Full Text PDF

Vibro-tactile stimulation of the neck induces head righting in people with cervical dystonia.

Parkinsonism Relat Disord

January 2025

Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, USA; Center for Clinical Movement Science, University of Minnesota, USA.

Introduction: Cervical dystonia (CD) is characterized by involuntary neck muscle spasms that lead to abnormal head movements or postures. It is associated with somatosensory (tactile and proprioceptive) dysfunction. Here we tested whether vibro-tactile stimulation (VTS) of the cervical muscles constitutes a non-invasive form of neuromodulation of the somatosensory system that can provide temporary symptom relief for people with CD.

View Article and Find Full Text PDF

A synchronized event-cue feedback loop integrating a 3D printed wearable flexible sensor-tactor platform.

Biosens Bioelectron

January 2025

Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:

Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!