Quantum mechanics calculations (B3LYP and MPW1K density functional theory) on mechanisms relevant to the Wacker process for dehydrogenation of alcohol to ketone show that the commonly accepted mechanism for product formation (beta-hydride elimination (BHE) leading to Pd-H formation) is not energetically feasible (36.2 kcal/mol). An alterative pathway involving a five-bodied reductive elimination (RE) leads to an activation enthalpy of 18.8 kcal/mol, which is just half that of the BHE from the -OH group usually assumed for the Wacker process. We find that a water molecule catalyzes both processes, reducing the barrier to 17.2 for RE and 25.0 for BHE, but will not change the relative ordering of the two mechanisms. This suggests that assumptions of BHE mechanisms should be reexamined for cases in which the beta atom is not an alkyl group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0533139 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Texas at Austin, Austin 78712, Texas, United States.
J Org Chem
January 2025
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
Using amines in catalytic transfer hydrogenation (TH) is challenging, despite their potential availability as a hydrogen source. Here, we describe a photoredox/nickel-catalyzed TH of alkyne through an intermediary aminoalkyl Ni species. This reaction successfully provided functionalized ()-alkenes, such as (homo)allyl ethers, alcohols, and amides (/ = up to >99:1), and the reaction thus bypasses a limitation of substrate scope in TH using amine and a Lindlar catalyst.
View Article and Find Full Text PDFFerrocenyl amines as directing groups for C-H activation have limitations as they are prone to undergo oxidation, allylic deamination, and β-hydride elimination. The fundamental challenge observed here is the competition between the desired C-H activation the vulnerable β-C-H bond activation of amines and fine-tuning of a suitable oxidant which avoids the oxidation of the β-C-H bond and ferrocene. Herein, the potential of an axially chiral NOBINAc ligand is revealed to implement the enantioselective Pd-catalyzed C-H activation process of ferrocenyl amines.
View Article and Find Full Text PDFChem Sci
December 2024
Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven 3001 Leuven Belgium
Palladium(ii)-catalyzed dehydrogenative coupling of aliphatic olefins would enable an efficient route to (conjugated) dienes, but remains scarcely investigated. Here, 2-hydroxypyridine (2-OH-pyridine) was found to be an effective ligand for Pd(ii) in the activation of vinylic C(sp)-H bonds. While reoxidation of Pd(0) is challenging in many catalytic oxidations, one can avoid in this reaction that the reoxidation becomes rate-limiting, even under ambient O pressure, by working in coordinating solvents.
View Article and Find Full Text PDFJ Org Chem
December 2024
Universitaet Potsdam, Institut fuer Chemie, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany.
The synthesis of coumarin- and flavonoid-chalcone hybrids via Pd-catalyzed Heck-type coupling of arene diazonium salts and 8-allylcoumarins and -flavonoids is reported. The β-hydride elimination step proceeds with high regioselectivity if an OMOM-substituent is present at the position C7, adjacent to the allyl group. A selective allylic oxidation of the coupling products was accomplished using DDQ in the presence of silica to furnish the chalcones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!