In this work, we demonstrate that boron nanowire Y-junctions can be synthesized in a self-assembled manner by fusing two individual boron nanowires grown inclined toward each other. We show that the presence of a second liquid, in addition to the liquid Au catalyst, is critical to the inclination of the boron nanowire. The structure of the BNYJ arrays that we report here may allow construction of three- or multiple-terminal nanowire devices directly on Si-based readout circuits through controlled nanowire growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl052138r | DOI Listing |
Nanomicro Lett
October 2024
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
With vigorous developments in nanotechnology, the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers. Herein, a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity. The macro-micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires (SiC) grown in situ, while boron nitride (BN) interfacial structure is introduced on graphene nanoplates.
View Article and Find Full Text PDFAdv Mater
November 2024
Max Planck Institute for Sustainable Materials, Max-Planck-Straße 1, 40237, Düsseldorf, Germany.
The oxygen reduction reaction (ORR) is a critical process that limits the efficiency of fuel cells and metal-air batteries due to its slow kinetics, even when catalyzed by platinum (Pt). To reduce Pt usage, enhancing both the specific activity and electrochemically active surface area (ECSA) of Pt catalysts is essential. Here, ultrafine, grain boundary (GB)-rich Pt nanoparticle assemblies are proposed as efficient ORR catalysts.
View Article and Find Full Text PDFThe recent rediscovery of 1D and quasi-1D (q-1D) van der Waals (vdW) crystals has laid foundation for the realization of emergent electronic, optical, and quantum-confined physical phenomena in both bulk and at the nanoscale. Of these, the highly anisotropic q-1D vdW crystal structure and the visible-light optical/optoelectronic properties of antimony trisulfide (SbS) have led to its widespread consideration as a promising building block for photovoltaic and non-volatile phase change devices. However, while these applications will greatly benefit from well-defined and sub-nanometer-thick q-1D structures, little has been known about feasible synthetic routes that can access single covalent chains of SbS.
View Article and Find Full Text PDFAdv Sci (Weinh)
June 2024
Center for Advanced Studies in Precision Instruments, Center for New Pharmaceutical Development and Testing of Haikou, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Material Science and Engineering, Hainan University, Haikou, Hainan, 570228, China.
Biomaterial-based flexible electromagnetic interference (EMI) shielding composite films are desirable in many applications of wearable electronic devices. However, much research focuses on improving the EMI shielding performance of materials, while optimizing the comprehensive safety of wearable EMI shielding materials has been neglected. Herein, wearable cellulose nanofiber@boron nitride nanosheet/silver nanowire/bacterial cellulose (CNF@BNNS/AgNW/BC) EMI shielding composite films with sandwich structure are fabricated via a simple sequential vacuum filtration method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2024
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.
The development of highly thermally conductive composites that combine visible light/infrared camouflage and information encryption has been endowed with great significance in facilitating the application of 5G communication technology in military fields. This work uses aramid nanofibers (ANF) as the matrix, hetero-structured silver nanowires@boron nitride nanosheets (AgNWs@BNNS) prepared by in situ growth as fillers, which are combined to fabricate sandwich structured thermally conductive and electrically insulating (BNNS/ANF)-(AgNWs@BNNS)-(BNNS/ANF) (denoted as BAB) composite films by "filtration self-assembly, air spraying, and hot-pressing" method. When the mass ratio of AgNWs@BNNS to BNNS is 1 : 1 and the total mass fraction is 50 wt %, BAB composite film has the maximum in-plane thermal conductivity coefficient (λ of 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!