Novel neutral antimony(V) complexes were isolated as crystalline materials and characterized by IR and NMR spectroscopy: o-amidophenolate complexes [4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-amidophenolato]triphenylantimony(V) (Ph3Sb[AP-Me], 1) and [4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-amidophenolato]triphenylantimony(v) (Ph3Sb[AP-iPr], 2); catecholate complexes (3,6-di-tert-butyl-4-methoxycatecholato)triphenylantimony(V) (Ph3Sb[(MeO)Cat], 3), its methanol solvate 3CH3OH (4); (3,6-di-tert-butyl-4,5-di-methoxycatecholato)triphenylantimony(V) (Ph3Sb[(MeO)2Cat], 5) and its acetonitrile solvate 5CH3CN (6). Complexes 1-7 were synthesized by oxidative addition of the corresponding o-iminobenzoquinones or o-benzoquinones to Ph3Sb. In the case of the phenanthrene-9,10-diolate (PhenCat) ligand, two different complexes were isolated: Ph3Sb[PhenCat] (7) and [Ph4Sb]+[Ph2Sb(PhenCat)2]- (8). Complexes 7 and 8 were found to be in equilibrium in solution. Molecular structures of 2, 4, 6, and 8 were determined by X-ray crystallography. Complexes 1-7 reversibly bind molecular oxygen to yield Ph3Sb[L-Me]O2 (9), Ph3Sb[L-iPr]O2 (10), Ph3Sb[(MeO)L']O2 (11), Ph3Sb[(MeO)2L']O2 (12) and Ph3Sb[PhenL']O2 (13), which contain five-membered trioxastibolane species (where L is the O,O',N-coordinated derivative of a 1-hydroperoxy-6-(N-aryl)-iminocyclohexa-2,4-dienol, and L' the O,O',O''-coordinated derivative of 6-hydroperoxy-6-hydroxycyclohexa-2,4-dienone). Complexes 9-13 were characterized by IR and 1H NMR spectroscopy and X-ray crystallography.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200501534DOI Listing

Publication Analysis

Top Keywords

molecular oxygen
8
complexes
8
complexes isolated
8
characterized nmr
8
nmr spectroscopy
8
complexes 1-7
8
x-ray crystallography
8
triphenylantimonyv catecholates
4
catecholates o-amidophenolates
4
o-amidophenolates reversible
4

Similar Publications

The Q-Band Energetics and Relaxation of Chlorophylls and as Revealed by Visible-to-Near Infrared Time-Resolved Absorption Spectroscopy.

J Phys Chem Lett

January 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China.

Chlorophyll (Chl) is the most abundant light-harvesting pigment of oxygenic photosynthetic organisms; however, the Q-band energetics and relaxation dynamics remain unclear. In this work, we have applied femtosecond time-resolved (-TA) absorption spectroscopy in 430-1,700 nm to Chls and in diluted pyridine solutions under selective optical excitation within their Q-bands. The results revealed distinct near-infrared absorption features of the B ← Q and B ← Q transitions in 930-1,700 nm, which together with the steady-state absorption in 400-700 nm unveiled the Q-state energy that lies 1,000 ± 400 and 600 ± 400 cm above the Q-state for Chls and , respectively.

View Article and Find Full Text PDF

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

Effect and mechanism of oritavancin on hIAPP amyloid formation.

J Mater Chem B

January 2025

Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.

Amyloidosis of the human islet amyloid polypeptide (hIAPP) is closely related to the pathogenesis of type 2 diabetes (T2D) and serves as both a diagnostic hallmark and a key therapeutic target for T2D. In this study, we discovered that oritavancin (Ori), a glycopeptide antibiotic primarily prescribed for Gram-positive bacterial infections, can dose-dependently inhibit recombinant hIAPP (rhIAPP) amyloid formation. Ori specifically inhibited rhIAPP amyloid formation at the initial nucleation stage but didn't affect mature rhIAPP fibrils.

View Article and Find Full Text PDF

Mutations in the mitochondrial (mt) genome contribute to metabolic dysfunction and their accumulation relates to disease progression and resistance development in cancer cells. This study explores the mutational status of the mt genome of cisplatin-resistant -sensitive testicular germ cell tumor (TGCT) cells and explores its association with their respiration parameters, expression of respiratory genes, and preferences for metabolic pathways to reveal new markers of therapy resistance in TGCTs. Using Illumina sequencing with Twist Enrichment Panel, the mutations of mt genomes of sensitive 2102EP, H12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!