A photocatalytic acid- and base-free Meerwein-Ponndorf-Verley-type reduction using a [Ru(bpy)3]2+/viologen couple.

Chemistry

Instituto de Tecnología Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain.

Published: May 2006

A photocatalytic system to effect the Meerwein-Ponndorf-Verley reduction of carbonylic compounds to alcohols has been developed. The system comprises [Ru(bpy)3]2+ as a photosensitizer, triethanolamine as a sacrificial electron donor, viologen as an electron acceptor, and the carbonyl compound and iPrOH as Meerwein-Ponndorf-Verley reagents. The photocatalytic reaction can be performed in neat iPrOH or in 1-butyl-3-methylimidazolium ionic liquid. Mass spectrometric detection of the viologen hydride derivative VH+ confirms that this species is the reducing agent responsible for the carbonyl compound reduction. The reaction intermediates involved in the photocatalytic system have also been characterized by laser flash photolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200501365DOI Listing

Publication Analysis

Top Keywords

photocatalytic system
8
carbonyl compound
8
photocatalytic
4
photocatalytic acid-
4
acid- base-free
4
base-free meerwein-ponndorf-verley-type
4
meerwein-ponndorf-verley-type reduction
4
reduction [rubpy3]2+/viologen
4
[rubpy3]2+/viologen couple
4
couple photocatalytic
4

Similar Publications

Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.

View Article and Find Full Text PDF

g-CN Modified with Metal Sulfides for Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants.

Molecules

January 2025

Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary.

Graphitic carbon nitride (g-CN) proved to be a promising semiconductor for the photocatalytic degradation of various organic pollutants. However, its efficacy is limited by a fast electron hole recombination, a restricted quantity of active sites, and a modest absorption in the visible range. To overcome these limitations, g-CN-BiS and g-CN-ZnS composites were effectively produced utilizing a starch-assisted technique.

View Article and Find Full Text PDF

Metal-free materials have been proved to be promising replacements of traditional metal-based catalysts for advanced oxidation reactions. Carbon nitride was found to be able to activate HO and generate hydroxyl radicals (•OH). Nevertheless, the performance of carbon nitride is highly dependent on an external light source.

View Article and Find Full Text PDF

A scalable solar-driven photocatalytic system for separated H and O production from water.

Nat Commun

January 2025

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, China.

Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced hydrogen and oxygen gases. Herein, we design and develop a photocatalytic system composed of two separate reaction parts: a hydrogen evolution cell containing halide perovskite photocatalysts (MoSe-loaded CH(NH)PbBrI) and an oxygen evolution cell containing NiFe-layered double hydroxide modified BiVO photocatalysts. These components are bridged by a I/I redox couple to facilitate electron transfer, realizing efficient overall water splitting with a solar-to-hydrogen conversion efficiency of 2.

View Article and Find Full Text PDF

Synergistic hydrogen production and organic pollutant removal via dual-functional photocatalytic systems.

J Environ Sci (China)

July 2025

Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:

Photocatalytic water splitting is a promising way to produce H, a green and clean energy source. However, efficient H production typically relies on the addition of electron donors, such as alcohols and acids, which are neither environmentally friendly nor cost-effective. Recently, we have witnessed a surge of studies in coupling photocatalytic H evolution with organic pollutant oxidation, which significantly promotes charge separation and improves the overall photocatalytic efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!