Injury and disease in the CNS increases the amount of tumor necrosis factor alpha (TNFalpha) that neurons are exposed to. This cytokine is central to the inflammatory response that occurs after injury and during prolonged CNS disease, and contributes to the process of neuronal cell death. Previous studies have addressed how long-term apoptotic-signaling pathways that are initiated by TNFalpha might influence these processes, but the effects of inflammation on neurons and synaptic function in the timescale of minutes after exposure are largely unexplored. Our published studies examining the effect of TNFalpha on trafficking of AMPA-type glutamate receptors (AMPARs) in hippocampal neurons demonstrate that glial-derived TNFalpha causes a rapid (<15 minute) increase in the number of neuronal, surface-localized, synaptic AMPARs leading to an increase in synaptic strength. This indicates that TNFalpha-signal transduction acts to facilitate increased surface localization of AMPARs from internal postsynaptic stores. Importantly, an excess of surface localized AMPARs might predispose the neuron to glutamate-mediated excitotoxicity and excessive intracellular calcium concentrations, leading to cell death. This suggests a new mechanism for excitotoxic TNFalpha-induced neuronal death that is initiated minutes after neurons are exposed to the products of the inflammatory response. Here we review the importance of AMPAR trafficking in normal neuronal function and how abnormalities that are mediated by glial-derived cytokines such as TNFalpha can be central in causing neuronal disorders. We have further investigated the effects of TNFalpha on different neuronal cell types and present new data from cortical and hippocampal neurons in culture. Finally, we have expanded our investigation of the temporal profile of the action of this cytokine relevant to neuronal damage. We conclude that TNFalpha-mediated effects on AMPAR trafficking are common in diverse neuronal cell types and very rapid in their onset. The abnormal AMPAR trafficking elicited by TNFalpha might present a novel target to aid the development of new neuroprotective drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1389713PMC
http://dx.doi.org/10.1017/S1740925X05000608DOI Listing

Publication Analysis

Top Keywords

tnfalpha-induced ampa-receptor
4
ampa-receptor trafficking
4
trafficking cns
4
neurons
4
cns neurons
4
neurons relevance
4
relevance excitotoxicity?
4
excitotoxicity? injury
4
injury disease
4
disease cns
4

Similar Publications

Tumor necrosis factor-α (TNFα) in the hypothalamic paraventricular nucleus (PVN) contributes to increased sympathetic nerve activity (SNA) in cardiovascular disease models, but mechanisms are incompletely understood. As previously reported, bilateral PVN TNFα (0.6 pmol, 50 nL) induced acute ramping of splanchnic SNA (SSNA) that averaged +64 ± 7% after 60 min and +109 ± 17% after 120 min ( < 0.

View Article and Find Full Text PDF

Brivaracetam prevents astroglial l-glutamate release associated with hemichannel through modulation of synaptic vesicle protein.

Biomed Pharmacother

June 2021

Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan. Electronic address:

The antiepileptic/anticonvulsive action of brivaracetam is considered to occur via modulation of synaptic vesicle protein 2A (SV2A); however, the pharmacological mechanisms of action have not been fully characterised. To explore the antiepileptic/anticonvulsive mechanism of brivaracetam associated with SV2A modulation, this study determined concentration-dependent effects of brivaracetam on astroglial L-glutamate release associated with connexin43 (Cx43), tumour-necrosis factor-α (TNFα) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate receptor of rat primary cultured astrocytes using ultra-high-performance liquid chromatography. Furthermore, interaction among TNFα, elevated extracellular K and brivaracetam on expression of SV2A and Cx43 was determined using capillary immunoblotting.

View Article and Find Full Text PDF

Cannabinoid CB1 receptors (CB1Rs) regulate the neurodegenerative damage of experimental autoimmune encephalomyelitis (EAE) and of multiple sclerosis (MS). The mechanism by which CB1R stimulation exerts protective effects is still unclear. Here we show that pharmacological activation of CB1Rs dampens the tumor necrosis factor α (TNFα)-mediated potentiation of striatal spontaneous glutamate-mediated excitatory postsynaptic currents (EPSCs), which is believed to cogently contribute to the inflammation-induced neurodegenerative damage observed in EAE mice.

View Article and Find Full Text PDF

After injury or during neurodegenerative disease in the central nervous system (CNS), the concentration of tumor necrosis factor alpha (TNFalpha) rises above normal during the inflammatory response. In vitro and in vivo, addition of exogenous TNFalpha to neurons has been shown to induce rapid plasma membrane-delivery of AMPA-type glutamate receptors (AMPARs) potentiating glutamatergic excitotoxicity. Thus the discovery of drug targets reducing excess TNFalpha-induced AMPAR surface expression may help protect neurons after injury.

View Article and Find Full Text PDF

Glutamate, the major excitatory neurotransmitter in the CNS, is implicated in both normal neurotransmission and excitotoxicity. Numerous in vitro findings indicate that the ionotropic glutamate receptor, AMPAR, can rapidly traffic from intracellular stores to the plasma membrane, altering neuronal excitability. These receptor trafficking events are thought to be involved in CNS plasticity as well as learning and memory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!