1. Delay-tuned combination-sensitive neurons (FM-FM neurons) have been discovered in the dorsal and medial divisions of the medial geniculate body (MGB) of the mustached bat (Pteronotus parnellii). In this paper we present evidence for a thalamic origin for FM-FM neurons. Our examination of the response properties of FM-FM neurons indicates that the neural mechanism of delay-tuning depends on coincidence detection and involves an interaction between neural inhibition and excitation. 2. The biosonar pulse (P) and its echo (E) produced and heard by the mustached bat consist of four harmonics; each harmonic contains a constant frequency (CF) component and a frequency modulated (FM) component. Thus the pulse-echo pair contains eight CF components (PCF1-4, ECF1-4) and eight FM components (PFM1-4, EFM1-4). The stimuli used in this study consisted of CF, FM, and CF-FM sounds: paired CF-FM sounds were used to simulate any two harmonics of pulse-echo pairs. The responses of FM-FM neurons in the MGB were recorded extracellularly. We found that FM-FM neurons respond poorly or not at all to single sounds, respond strongly to paired sounds, and are tuned to the frequency and amplitude of each sound of the pair and to the time interval separating them (simulated echo delay). 3. All FM-FM neurons are facilitated by paired FM sounds and most are facilitated by paired CF sounds. Best facilitative frequencies measured with paired CF sounds fall outside the frequency ranges of the CF components of biosonar signals, whereas best facilitative frequencies measured with paired FM sounds fall within the frequency ranges of the FM components of biosonar signals. Thus FM-FM neurons are expected to respond selectively to combinations of FM components in biosonar signals. The FM components of pulse-echo pairs essential to facilitate FM-FM neurons are the FM component of the fundamental of the pulse (PFM1) in combination with the FM component of the second, third, or fourth harmonic of an echo (EFM2, EFM3, EFM4; collectively, EFMn). 4. The frequency combinations to which FM-FM neurons are tuned reflect small deviations from the harmonic relationship such as occurs in combinations of FM components from pulses and Doppler-shifted echoes. Compared with CF/CF neurons, however, FM-FM neurons are broadly tuned to stimulus frequency. Thus FM-FM neurons are Doppler-shift tolerant and relatively unspecialized for processing velocity information in the frequency domain.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.1991.65.6.1275DOI Listing

Publication Analysis

Top Keywords

fm-fm neurons
44
paired sounds
20
neurons
13
mustached bat
12
components biosonar
12
biosonar signals
12
fm-fm
11
combination-sensitive neurons
8
medial geniculate
8
geniculate body
8

Similar Publications

Background And Purpose: Strong experimental neurobehavioral evidence suggests that intensive training improves arm motor disability after stroke. Yet, we still have only limited understanding why some patients recover more completely and others do not. This is in part due to our limited knowledge of the neurobiological principles of recovery from stroke.

View Article and Find Full Text PDF

Functional organization of the primary auditory cortex of the free-tailed bat Tadarida brasiliensis.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

May 2020

Department of Biology, Texas A&M University, College Station, TX, 77843, USA.

The Mexican free-tailed bat, Tadarida brasiliensis, is a fast-flying bat that hunts by biosonar at high altitudes in open space. The auditory periphery and ascending auditory pathways have been described in great detail for this species, but nothing is yet known about its auditory cortex. Here we describe the topographical organization of response properties in the primary auditory cortex (AC) of the Mexican free-tailed bat with emphasis on the sensitivity for FM sweeps and echo-delay tuning.

View Article and Find Full Text PDF

Inhibitory mechanisms shaping delay-tuned combination-sensitivity in the auditory cortex and thalamus of the mustached bat.

Hear Res

March 2019

Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA. Electronic address:

Delay-tuned auditory neurons of the mustached bat show facilitative responses to a combination of signal elements of a biosonar pulse-echo pair with a specific echo delay. The subcollicular nuclei produce latency-constant phasic on-responding neurons, and the inferior colliculus produces delay-tuned combination-sensitive neurons, designated "FM-FM" neurons. The combination-sensitivity is a facilitated response to the coincidence of the excitatory rebound following glycinergic inhibition to the pulse (1st harmonic) and the short-latency response to the echo (2nd-4th harmonics).

View Article and Find Full Text PDF

Acuity in ranging based on delay-tuned combination-sensitive neurons in the auditory cortex of mustached bats.

Hear Res

July 2017

Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA. Electronic address:

A 1.0-ms echo delay from an emitted bio-sonar pulse at 25 °C corresponds to a 17.3-cm target distance.

View Article and Find Full Text PDF

While approaching an object, echolocating bats decrease the amplitude of their vocalizations. This behavior is known as "echo-level compensation." Here, the activation pattern of the cortical FM-FM (frequency modulated) area of the mustached bat is assessed by using acoustic stimuli that correspond to sonar signals and their echoes emitted during echo-level compensation behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!