This work revisits the use of surfactant titrations for the characterization of latex particle surfaces. Experiments were performed to study the effect of comonomer composition and the effect of acid comonomers, and the technique is applied to the characterization of particle morphology in composite latices for several different systems. It is confirmed that the packing density of surfactant on a polymer surface is a linear function of copolymer composition. Inclusion of acid comonomers has the expected effect of decreasing the amount of surfactant adsorbed on the polymer surfaces. The usefulness of the technique in the determination of particle morphology is demonstrated, in particular toward the detection of thin layers of either seed or second-stage polymer on the particle surface which are not easily detected by other techniques such as transmission electron microscopy (TEM). Finally, it is shown that the use of acid comonomers in composite particles greatly reduces the usefulness of the surfactant titration technique for morphology characterization. A possible explanation for this effect is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la052721n | DOI Listing |
Small
January 2025
Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
Macromol Rapid Commun
December 2024
School of Mathematical and Physical Sciences, University of Sheffield, Dainton Building, Sheffield, S3 7HF, UK.
Natural single-chain nanoparticles (SCNPs) such as proteins have inspired research into the formation and application of synthetic SCNPs. Although the latter can mimic general aspects of the self-assembly behavior of their biological counterparts, these systems remain relatively understudied. In this respect, a systematic series of amphiphilic statistical copolymers (ASC) of different molecular weights, with a hydrophilic comonomer (methacrylic acid) and varying hydrophobic comonomer to encompass methacrylates of different hydrophobicity, are synthesized.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
Comonomer defects can induce semicrystalline polymers to form unique crystalline structures (., defect crystals), which can greatly influence the materials' physical properties. However, the formation mechanism and structural evolution of defect polymer crystals are not yet well understood.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
To address the problems of ecological pollution and food safety caused by the excessive use of chemical fertilizers in modern agriculture, it has become a hot topic of current research to develop novel low-cost, biodegradable, and efficient gel slow-release fertilizers. Herein, using xanthan gum and ZrMOF as raw materials, urea as a nutrient, acrylic acid and itaconic acid as co-monomers, a novel ZrMOF gel slow-release fertilizer (ZrMOF@CpM) was prepared by free radical copolymerization. After being characterized, its swelling and water retention properties and slow-release behavior were investigated.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
As water-saturated polymer networks, the easy water loss of hydrogels directly affects their end-use applications. Minimizing the ratio of free water and increasing the ratio of bound water in the gel system has become key to extending the service life. In this work, an ionogel is prepared that effectively regulates the proportion of free water and bound water through the formation of wrinkle angles by the hydrophilic and hydrophobic chains in the gel system and the non-volatile nature of the ionic liquid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!