Dissolved copper is an increasingly common non-point source contaminant in urban and urbanizing watersheds. In the present study, we investigated the sublethal effects of dissolved copper on the peripheral mechanosensory system, or lateral line, of larval zebrafish (Danio rerio). Zebrafish larvae were exposed to copper (0-65 microg/L), and the cytotoxic responses of individual lateral line receptor neurons were examined using a combination of in vivo fluorescence imaging, confocal microscopy, scanning electron microscopy, and conventional histology. Dissolved copper triggered a dose-dependent loss of neurons in identified lateral line neuromasts at concentrations > or = 20 microg/L. The onset of cell death in the larval mechanosensory system was rapid (< 1 h). When copper-exposed zebrafish were transferred to clean water, the lateral line regenerated over the course of 2 d. In contrast, the lateral line of larvae exposed continuously to dissolved copper (50 microg/L) for 3 d did not recover. Collectively, these results show that peripheral mechanosensory neurons are vulnerable to the neurotoxic effects of copper. Consequently, dissolved copper in non-point source storm-water runoff has the potential to interfere with rheotaxis, schooling, predator avoidance, and other mechanosensory-mediated behaviors that are important for the migration and survival of fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1897/05-241r.1 | DOI Listing |
Int J Mol Sci
January 2025
Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs.
View Article and Find Full Text PDFEvid Based Dent
January 2025
Doctoral Research Fellow and Specialty Trainee (Endodontics), School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
Aims: This study aimed to assess the effectiveness of a novel antimicrobial gel, containing copper and silver nanoparticles, for use in root canal disinfection.
Methods: Copper and silver-based gels were created in-house, using a support network of biocompatible polymers, including polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG). Six experimental groups were created, three containing silver ions and three copper ions, where the PVA, PVP and PEG ratios were also adjusted in each group to test the gel's physical state.
Toxicol Mech Methods
January 2025
Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
Behavioral endpoints are of increasing interest in toxicology because of their sensitivity, but require clear guidance for experimental design. This study describes the design of a hypoxia chamber for use with pond snails, . Studies assessing the switch from water- to air-breathing in hypoxic conditions have previously utilized methods that neglect intricacies of animal behavior such as handling stress and acclimation.
View Article and Find Full Text PDFChemosphere
December 2024
University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovica 3, 21000, Novi Sad, Serbia.
This study investigates the environmental risks posed by heavy metals in sediment from the Great Bačka Canal using both active and passive sampling methods. The necessity of this research lies in the critical need to address sediment contamination in ecological hotspots and enhance sediment management practices. Active sampling revealed total heavy metal concentrations, while sequential extraction showed bioavailability varied across metal fractions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!