The presence of atrazine in agricultural sites has been linked to the decline in amphibian populations. The efforts of the scientific community generally are directed toward investigating the long-term effect of atrazine on complex functions (reproduction or respiration), but in the present study, we investigated the short-term effect on the short-circuit current (I(sc)), a quantitative measure of the ion transport operated by frog (Rana esculenta) skin. Treatment with 5 microM atrazine (1.08 mg/L) does not affect the transepithelial outfluxes of [14C]mannitol or [14C]urea; therefore, atrazine does not damage the barrier properties of frog skin. Atrazine causes a dose-dependent increase in the short-circuit current, with a minimum of 4.64 +/- 0.76 microA/cm2 (11.05% +/- 1.22%) and a maximum of 12.7 +/- 0.7 microA/cm2 (35% +/- 2.4%) measured at 10 nM and 5 microM, respectively. An increase in Isc also is caused by 5 microM ametryne, prometryn, simazine, terbuthylazine, or terbutryn (other atrazine derivatives). In particular, atrazine increases the transepithelial 22Na+ influx without affecting the outflux. Finally, stimulation of Isc by atrazine is suppressed by SQ 22536, H89, U73122, 2-aminoethoxydiphenyl borate, and W7 (blockers of adenylate cyclase, protein kinase A, phospholipase C, intracellular Ca2+ increase, and calmodulin, respectively), whereas indomethacin and calphostin C (inhibitors of cyclooxygenase and protein kinase C, respectively) have no effect.

Download full-text PDF

Source
http://dx.doi.org/10.1897/05-141r.1DOI Listing

Publication Analysis

Top Keywords

atrazine
9
atrazine increases
8
frog rana
8
rana esculenta
8
esculenta skin
8
short-circuit current
8
protein kinase
8
increases sodium
4
sodium absorption
4
absorption frog
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!