Functional characterization of human mesenchymal stem cells that maintain osteochondral fates.

J Cell Biochem

Departamento de Biología Molecular, Centro de Biología Molecular, Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Published: August 2006

Adult stem cells are essential for tissue renewal, regeneration and repair, and their expansion in defined culture medium is on focus for regenerative medicine and genetic pathologies. The bone marrow has been shown to be very rich is pluripotent mesenchymal stem cells (MSCs) capable of forming bone, cartilage and also may give rise, to neurons and astrocytes in vivo and in vitro. MSCs can be isolated and expanded in culture, but human cells cannot be verified for a cartilage or a bone fate by transfer experiments. Accordingly, here we used different approaches to characterize hMSCs osteoblastic differentiation in vitro. hMSCs grown in culture in the presence of fetal bovine serum (FBS) expressed the bone-specific transcription factor Runx2/AML3. When cells were incubated in osteoblastic differentiation medium, cells expressed transcripts belonging to the signaling of Indian HH-PTHrP axis, GLI transcription factors, and bone target genes including osteopontin. The HH pathway proved to be functional since it induced cells to grow. Cells growing or differentiating to osteoblasts presented the Runx2/AML3 transcription factor, its partner CBFB, and Smad2/3 at the nuclei associated with the nuclear matrix. Furthermore, Runx2/AML3 was observed to co-localize with SC35 to the nuclear intermediary filaments. These data support the notion that hMSCs isolated from human bone are or become bone progenitor cells upon culture. In the absence of FBS and in the presence of insulin or prolactin, cells show cytoskeletal organization and an AP-1 transcription site activity resembling proliferative osteochondrocytes while cells in the presence of dexamethasone and added prolactin or TGF-beta resembled differentiated osteoblasts. These specific cellular conditions match those observed during endochondral bone formation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.20778DOI Listing

Publication Analysis

Top Keywords

stem cells
12
cells
11
mesenchymal stem
8
osteoblastic differentiation
8
transcription factor
8
bone
7
functional characterization
4
characterization human
4
human mesenchymal
4
cells maintain
4

Similar Publications

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

Human Oncostatin M deficiency underlies an inherited severe bone marrow failure syndrome.

J Clin Invest

January 2025

Laboratory of Genome Dynamics in the Immune, INSERM UMR 116, Équipe Labellisée LIGUE 2023, Paris, France.

Oncostatin M (OSM) is a cytokine with the unique ability to interact with both the OSM receptor (OSMR) and the leukemia inhibitory factor receptor (LIFR). On the other hand, OSMR interacts with IL31RA to form the interleukin-31 receptor. This intricate network of cytokines and receptors makes it difficult to understand the specific function of OSM.

View Article and Find Full Text PDF

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

Microfluidic vessel-on-chip platform for investigation of cellular defects in venous malformations and responses to various shear stress and flow conditions.

Lab Chip

January 2025

Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland.

A novel microfluidic platform was designed to study the cellular architecture of endothelial cells (ECs) in an environment replicating the 3D organization and flow of blood vessels. In particular, the platform was constructed to investigate EC defects in slow-flow venous malformations (VMs) under varying shear stress and flow conditions. The platform featured a standard microtiter plate footprint containing 32 microfluidic units capable of replicating wall shear stress (WSS) in normal veins and enabling precise control of shear stress and flow directionality without the need for complex pumping systems.

View Article and Find Full Text PDF

Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells.

J Dev Biol

December 2024

Department of Neuroscience, Biomedicine and Movement-Sec. Anatomy and Histology, University of Verona, Via Le Grazie 8, 37134 Verona, Italy.

Since its first conceptualization over a century ago, the mesenchymal phenotype has traditionally been viewed as either a transient phase between successive epithelial stages or as a feature of cell types primarily devoted to structural support. However, recent findings in cancer research challenge this limited view, demonstrating that mesenchymal traits and hybrid mesenchymal/epithelial states can mark cancer cells with stem cell properties. By analyzing publicly available single-cell transcriptome datasets from early embryonic stages and adult tissues, this study aims to extend this concept beyond pathological contexts, suggesting that a partial or fully mesenchymal phenotype may represent the morphological expression of undifferentiated and multipotent states in both the developing embryo and adult organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!