The brain tissue has a large oxidative capacity, but its ability to combat oxidative stress is limited. In aging brain tissue the oxidative stress increases due to decreased activity of antioxidant enzymes and increased oxidative stress leading to neurodegeneration associated with excitotoxicity. The aim of the present study was to determine the effect of neuropeptides, neurokinin B (NKB) and amyloid beta protein fragment Abeta (25-35) and neurotransmitters N-methyl D-aspartate (NMDA) and Glutamate on rat brain synaptosomes of different age groups. Aging brain functions were assessed by measuring the activities of superoxide dismutase (Mn-SOD) and monoamine oxidase (MAO) and intrasynaptosomal [Ca(2+)](i )levels in presence of neuropeptides and neurotransmitters. Increase in age decreased the SOD and MAO enzyme activities; Abeta (25-35) addition further had damaging/toxic effects on the enzymes, whereas NKB alone and in combination with amyloid lowered the toxic effects caused by Abeta (25-35) addition, which was concentration (peptide) and age dependent. Oxidative stress and excitotoxicity are major consequences associated with the age, [Ca(2+)](i )was increased with the age and the neuropeptides and neurotransmitters elicited significant modulatory effects on it. Our study elucidates an increased activity of SOD, decreased activity of MAO and restoration of [Ca(2+)](i) levels in the presence of NKB and suggests an antioxidant, neuromodulatory and neuroprotective role of tachykinin peptide NKB against the beta amyloid induced toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10522-005-6043-0DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
abeta 25-35
12
neuroprotective role
8
neurokinin nkb
8
induced toxicity
8
rat brain
8
brain synaptosomes
8
stress excitotoxicity
8
brain tissue
8
aging brain
8

Similar Publications

Aim: St. John\'s Wort Oil (JWO) has a sedative property and it is used traditionally for the treatment of depression, neuralgia and excitability. JWO has been shown to have anticancer activity via apoptosis in glioblastoma cells.

View Article and Find Full Text PDF

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are associated with amyloid-β (Aβ) dysmetabolism, a pivotal factor in the pathogenesis of Alzheimer's disease (AD). This study unveiled a novel miRNA, microRNA-32533 (miR-32533), featuring a distinctive base sequence identified through RNA sequencing of the APPswe/PSEN1dE9 (APP/PS1) mouse brain. Its role and underlying mechanisms were subsequently explored.

View Article and Find Full Text PDF

CAMKIIδ Reinforces Lipid Metabolism and Promotes the Development of B Cell Lymphoma.

Adv Sci (Weinh)

January 2025

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.

The most prevalent types of lymphomas are B cell lymphomas (BCL). Newer therapies for BCL have improved the prognosis for many patients. However, approximately 30% with aggressive BCL either remain refractory or ultimately relapse.

View Article and Find Full Text PDF

With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!