The presence of slow motions with large amplitudes, as detected by measurements based on residual dipolar couplings [Peti, W., Meiler, J., Brueschweiler, R. and Griesinger, C. (2002) J. Am. Chem. Soc., 124, 5822-5833], has stirred up much discussion in recent years. Based on ubiquitin NH residual dipolar couplings (rdcs) measured in 31 different alignment conditions, a model-free analysis of structure and dynamics [Meiler, J., Peti, W., Prompers, J., Griesinger, C. and Brueschweiler, R. (2001) J. Am. Chem. Soc., 123, 6098-6107] is presented. Starting from this broad experimental basis, rdc-based order parameters with so far unattained accuracy were determined. These rdc-based order parameters underpin the presence of new modes of motion slower than the inverse overall tumbling correlation time. Amplitudes and anisotropies of the motion were derived. The effect of structural noise on the results was proven to be negligible.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10858-005-5686-0DOI Listing

Publication Analysis

Top Keywords

residual dipolar
12
dipolar couplings
12
chem soc
8
rdc-based order
8
order parameters
8
thorough dynamic
4
dynamic interpretation
4
interpretation residual
4
couplings ubiquitin
4
ubiquitin presence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!