A trans-tail histone code defined by monomethylated H4 Lys-20 and H3 Lys-9 demarcates distinct regions of silent chromatin.

J Biol Chem

Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA.

Published: May 2006

AI Article Synopsis

  • The study focuses on the role of specific post-translational modifications of histone H4 Lys-20 and their relationship with transcriptional activities in cells.
  • Researchers developed antibodies to differentiate between mono-, di-, and trimethylated states of H4 Lys-20, revealing their distinct locations in transcriptionally inactive areas of the nucleus.
  • The interplay between various methylation states of H4 Lys-20 and histone H3 Lys-9 suggests a unique histone code that helps define specific silent chromatin regions, highlighting how these modifications collaborate in the epigenetic regulation of gene expression.

Article Abstract

The specific post-translational modifications of the histone proteins are associated with specific DNA-templated processes, such as transcriptional activation or repression. To investigate the biological role(s) of histone H4 lysine 20 (H4 Lys-20) methylation, we created a novel panel of antibodies that specifically detected mono-, di-, or trimethylated H4 Lys-20. We report that the different methylated forms of H4 Lys-20 are compartmentalized within visually distinct, transcriptionally silent regions in the mammalian nucleus. Interestingly, direct comparison of methylated H4 Lys-20 with the different methylated states of histone H3 lysine 9 (H3 Lys-9) revealed significant overlap and exclusion between the specific groups of methyl modifications. Trimethylated H4 Lys-20 and H3 Lys-9 were both selectively enriched within pericentric heterochromatin. Similarly, monomethylated H4 Lys-20 and H3 Lys-9 partitioned together and the dimethylated forms partitioned together within the chromosome arms; however, the mono- and dimethylated modifications were virtually exclusive. These findings strongly suggest that the combinatorial presence or absence of the different methylated states of H4 Lys-20 and H3 Lys-9 define particular types of silent chromatin. Consistent with this, detailed analysis of monomethylated H4 Lys-20 and H3 Lys-9 revealed that both were preferentially and selectively enriched within the same nucleosome particle in vivo. Collectively, these findings define a novel trans-tail histone code involving monomethylated H4 Lys-20 and H3 Lys-9 that act cooperatively to mark distinct regions of silent chromatin within the mammalian epigenome.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M513462200DOI Listing

Publication Analysis

Top Keywords

lys-20 lys-9
24
monomethylated lys-20
16
silent chromatin
12
lys-20
10
trans-tail histone
8
histone code
8
distinct regions
8
regions silent
8
histone lysine
8
trimethylated lys-20
8

Similar Publications

A meta-analysis was conducted to evaluate the effects of branched-chain amino acids (BCAA), their interactions, and interactions with large neutral amino acids (LNAA) to develop prediction equations for growth performance of pigs. Data from 25 papers, published from 1995 to 2018, for a total of 44 trials and 210 observations were recorded in a database. Diets were reformulated using the NRC (2012) loading values to estimate nutrient concentrations.

View Article and Find Full Text PDF

Histone proteins contain epigenetic information that is encoded both in the relative abundance of core histones and variants and particularly in the post-translational modification of these proteins. We determined the presence of such variants and covalent modifications in seven tissue types of the anuran Xenopus laevis, including oocyte, egg, sperm, early embryo equivalent (pronuclei incubated in egg extract), S3 neurula cells, A6 kidney cells, and erythrocytes. We first developed a new robust method for isolating the stored, predeposition histones from oocytes and eggs via chromatography on heparin-Sepharose, whereas we isolated chromatinized histones via conventional acid extraction.

View Article and Find Full Text PDF

Imprinted genes are important in development and their allelic expression is mediated by imprinting control regions (ICRs). On their DNA-methylated allele, ICRs are marked by trimethylation at H3 Lys 9 (H3K9me3) and H4 Lys 20 (H4K20me3), similar to pericentric heterochromatin. Here, we investigate which histone methyltransferases control this methylation of histone at ICRs.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) of histones play an important role in many cellular processes, notably gene regulation. Using a combination of mass spectrometric and immunobiochemical approaches, we show that the PTM profile of histone H3 differs significantly among the various model organisms examined. Unicellular eukaryotes, such as Saccharomyces cerevisiae (yeast) and Tetrahymena thermophila (Tet), for example, contain more activation than silencing marks as compared with mammalian cells (mouse and human), which are generally enriched in PTMs more often associated with gene silencing.

View Article and Find Full Text PDF

Here, we describe a role for mammalian DNA methyltransferases (DNMTs) in telomere length control. Mouse embryonic stem (ES) cells genetically deficient for DNMT1, or both DNMT3a and DNMT3b have dramatically elongated telomeres compared with wild-type controls. Mammalian telomere repeats (TTAGGG) lack the canonical CpG methylation site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!