Neuropeptide FF (NPFF) is an octapeptide belonging to an extended family of RF amide peptides that have been implicated in a wide variety of physiological functions in the brain. NPFF and its receptors are abundantly expressed in the rat brain and spinal cord including the hypothalamic paraventricular nucleus (PVN), an autonomic nucleus critical for the secretion of neurohormones and the regulation of sympathetic outflow. In this study, we sought to examine the effects of NPFF on GABAergic inhibitory synaptic input to magnocellular neurosecretory cells (MNCs) of the PVN, which secrete the neurohormones, vasopressin and oxytocin from their terminals in the neurohypophysis. Whole cell patch clamp recordings under voltage clamp conditions were performed from PVN MNCs in the brain slice. Bicuculline-sensitive inhibitory postsynaptic currents (IPSCs) were isolated in the presence of glutamate receptor blockers. In tetrodotoxin, NPFF (5 microM) caused an increase in frequency, but not amplitude of miniature inhibitory postsynaptic currents (mIPSCs) in MNCs indicating a presynaptic locus of action for this peptide. Intracerebroventricular application of NPFF resulted in an activation of GABAergic neurons located adjacent to the PVN as revealed by immunohistochemistry for Fos protein and in situ hybridization for glutamic acid decarboxylase (GAD67) mRNA. Based on these observations we conclude that NPFF facilitates inhibitory input to MNCs of the PVN via GABAergic interneurons located in immediate vicinity of the nucleus. These findings provide a cellular and anatomic basis for the NPFF-induced inhibition of vasopressin release has been reported consequent to hypovolemia and hyperosmolar stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2005.07.030 | DOI Listing |
Int J Mol Sci
December 2024
Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA.
Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation.
View Article and Find Full Text PDFNeuroscience
January 2025
Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China. Electronic address:
Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea.
This study explores the neuroprotective effects of neuropeptide FF (NPFF, FLFQPQRFamide) in the context of ischemic injury. Based on transcriptomic analysis in stroke models treated with 5-Aza-dC and task-specific training, we identified significant gene expression changes, particularly involving NPFF. To further explore NPFF's role in promoting neuronal recovery, recombinant NPFF protein (rNPFF) was used in primary mixed cortical cultures subjected to oxygen-glucose deprivation and reoxygenation.
View Article and Find Full Text PDFNeuropeptides
December 2024
Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China. Electronic address:
The neuropeptide FF (NPFF) system regulates various physiological and pharmacological functions, particularly pain modulation. However, the modulatory effect of NPFF system on itch remains unclear. To investigate the modulatory effect and functional mechanism induced by NPFF system on acute itch, we examined the effects of supraspinal administration of NPFF and related peptides on acute itch induced by intradermal (i.
View Article and Find Full Text PDFBMC Biol
September 2024
CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
Background: Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!