Cargo partitioning into intralumenal vesicles (ILVs) of multivesicular endosomes underlies such cellular processes as receptor downregulation, viral budding, and biogenesis of lysosome-related organelles such as melanosomes. We show that the melanosomal protein Pmel17 is sorted into ILVs by a mechanism that is dependent upon lumenal determinants and conserved in non-pigment cells. Pmel17 targeting to ILVs does not require its native cytoplasmic domain or cytoplasmic residues targeted by ubiquitylation and, unlike sorting of ubiquitylated cargo, is insensitive to functional inhibition of Hrs and ESCRT complexes. Chimeric protein and deletion analyses indicate that two N-terminal lumenal subdomains are necessary and sufficient for ILV targeting. Pmel17 fibril formation, which occurs during melanosome maturation in melanocytes, requires a third lumenal subdomain and proteolytic processing that itself requires ILV localization. These results establish an Hrs- and perhaps ESCRT-independent pathway of ILV sorting by lumenal determinants and a requirement for ILV sorting in fibril formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1773005 | PMC |
http://dx.doi.org/10.1016/j.devcel.2006.01.012 | DOI Listing |
Autophagy
December 2024
Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Japan.
Autophagy
November 2024
Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
Cancer cells compensate with increasing mitochondria-derived vesicles (MDVs) to maintain mitochondrial homeostasis, when canonical MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta)-mediated mitophagy is lacking. MDVs promote the transport of mitochondrial components into extracellular vesicles (EVs) and induce tumor metastasis. Although HSP90 (heat shock protein 90) chaperones hundreds of client proteins and its inhibitors suppress tumors, HSP90 inhibitors-related chemotherapy is associated with unexpected metastasis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI 53706.
Multivesicular endosomes (MVEs) sequester membrane proteins destined for degradation within intralumenal vesicles (ILVs), a process mediated by the membrane-remodeling action of Endosomal Sorting Complex Required for Transport (ESCRT) proteins. In , endosomal membrane constriction and scission are uncoupled, resulting in the formation of extensive concatenated ILV networks and enhancing cargo sequestration efficiency. Here, we used a combination of electron tomography, computer simulations, and mathematical modeling to address the questions of when concatenated ILV networks evolved in plants and what drives their formation.
View Article and Find Full Text PDFImmunity
August 2024
Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. Electronic address:
Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections.
View Article and Find Full Text PDFBiol Open
May 2024
Graduate course of Biological Sciences, Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 020-8551, Morioka, Japan.
Arf GTPase-activating proteins (ArfGAPs) mediate the hydrolysis of GTP bound to ADP-ribosylation factors. ArfGAPs are critical for cargo sorting in the Golgi-to-ER traffic. However, the role of ArfGAPs in sorting into intralumenal vesicles (ILVs) in multivesicular bodies (MVBs) in post-Golgi traffic remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!