This study was performed to characterize the genes that code for superoxide dismutase (SOD) in Leishmania aethiopica. It involved three main steps: specimen collection and parasite isolation, species identification, and molecular characterization of the SOD genes. Out of 20 skin slit specimens cultured and processed from suspected cutaneous leishmaniasis patients enrolled in the study, five (25%) were found to be positive for motile promastigotes. Isoenzyme electrophoresis and PCR-RFLP results confirmed that the isolates were L. aethiopica. Superoxide dismutase-B (SODB) genes were identified from L. aethiopica for the first time. Iron superoxide dismutase-B genes amplified from promastigotes of L. aethiopica (LaeFeSODB) were similar in size to the SODB genes of other Leishmania species. Nucleotide sequences of LaeFeSODB1 showed 95.4, 93.5, and 97.3% identity with L. donovani SODB1 (LdFeSODB1) L. major SODB1 (LmFeSODB1) and L. tropica SODB1 (LtrFeSODB1), respectively. Similarly, LaeFeSODB2 showed 95.9 and 94.1 and 97.6% identity with LdFeSODB2 and LmFeSODB2 and LtrFeSODB2, respectively. On the other hand, predicted amino acid sequence comparison indicated that LaeFeSODB1 had 91.3, 89.8, and 93.9% identity with LdFeSODB1, LmFeSODB1, and LtrFeSODB1, respectively. The difference in nucleic acid sequence of LaeFeSODB from that of LmFeSODB and LtrFeSODB can be utilized to develop specific molecular methods that help differentiate these species in places where there is an overlap in the distribution of these species. In addition, the data provide information about the situation of L. aethiopica with respect to SODB genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2006.01.010DOI Listing

Publication Analysis

Top Keywords

superoxide dismutase-b
12
sodb genes
12
leishmania aethiopica
8
dismutase-b genes
8
acid sequence
8
genes
7
aethiopica
5
aethiopica strain
4
strain identification
4
identification characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!