Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: This study sought to evaluate whether the entity of microvascular dysfunction, assessed by positron emission tomography (PET), predicts the long-term development of left ventricular (LV) remodeling and systolic dysfunction in hypertrophic cardiomyopathy (HCM).
Background: A subgroup of patients with HCM developed LV dilation and systolic impairment. A causal role of coronary microvascular dysfunction has been suggested as the underlying pathophysiological mechanism.
Methods: Fifty-one patients (New York Heart Association functional class I to II) were followed up for 8.1 +/- 2.1 years after measurement of resting and dipyridamole (Dip) myocardial blood flow (MBF). Left ventricular systolic dysfunction was defined as an ejection fraction (LVEF) <50%.
Results: The Dip-MBF was blunted in HCM patients compared with a group of healthy control patients (1.50 +/- 0.69 ml/min/g vs. 2.71 +/- 0.94 ml/min/g; p < 0.001). At final evaluation, 11 patients (22%) had an LVEF <50%; in most (n = 7), systolic dysfunction was associated with a significant increase in LV cavity dimensions (>5 mm) during follow-up. These 11 patients showed lower Dip-MBF than the 40 with preserved LV function (1.04 +/- 0.38 ml/min/g vs. 1.63 +/- 0.71 ml/min/g, respectively; p = 0.001); Dip-MBF was particularly blunted in five patients with clinical progression to severe heart failure symptoms or death (Dip-MBF 0.89 +/- 0.15 ml/min/g). At multivariate analysis, the two independent predictors of systolic dysfunction were Dip-MBF in the lowest tertile (<1.1 ml/min/g; relative hazard, 7.5; p = 0.038) and an end-diastolic LV dimension in the highest tertile (>45 mm; relative hazard, 12.3; p = 0.031).
Conclusions: Severe microvascular dysfunction is a potent long-term predictor of adverse LV remodeling and systolic dysfunction in HCM. Our findings indicate microvascular dysfunction as a potential target for prevention of disease progression and heart failure in HCM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jacc.2005.10.050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!