Autosomal dominant polycystic kidney disease (ADPKD) is one of the commonest inherited human disorders yet remains relatively unknown to the wider medical, scientific and public audience. ADPKD is characterised by the development of bilateral enlarged kidneys containing multiple fluid-filled cysts and is a leading cause of end-stage renal failure (ESRF). ADPKD is caused by mutations in two genes: PKD1 and PKD2. The protein products of the PKD genes, polycystin-1 and polycystin-2, form a calcium-regulated, calcium-permeable ion channel. The polycystin complex is implicated in regulation of the cell cycle via multiple signal transduction pathways as well as the mechanosensory function of the renal primary cilium, an enigmatic cellular organelle whose role in normal physiology is still poorly understood. Defects in cilial function are now documented in several other human diseases including autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome and many animal models of polycystic kidney disease. Therapeutic trials in these animal models of polycystic kidney disease have identified several promising drugs that ameliorate disease severity. However, elucidation of the function of the polycystins and the primary cilium will have a major impact on our understanding of renal cystic diseases and will create exciting new opportunities for the design of disease-specific therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1462399406010362 | DOI Listing |
Nephron
January 2025
Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent hereditary kidney disease and the fourth most common cause of kidney failure. Patients may be aware of their condition from an early age or discover it unexpectedly, with varying levels of familial knowledge about the disease. This chronic condition presents significant challenges for healthcare professionals.
View Article and Find Full Text PDFClin J Am Soc Nephrol
January 2025
Section of Nephrology, University of Chicago Medicine.
Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of end-stage kidney disease (ESKD) and occurs without racial predilection. In general, non-White ESKD patients have less access to transplantation, especially living donor transplantation. We examined long-term outcomes of ADPKD-ESKD patients by self-reported race, with attention to the trajectory of Estimated Post-Transplant Survival (EPTS) scores over time.
View Article and Find Full Text PDFBackground And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca -modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.
View Article and Find Full Text PDFGenes (Basel)
December 2024
The International Renal Research Institute of Vicenza (IRRIV) Foundation, ULSS 8 BERICA, San Bortolo Hospital, 36100 Vicenza, Italy.
: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is mainly characterized by renal involvement with progressive bilateral development of renal cysts and volumetric increase in the kidneys, causing a loss of renal function, chronic kidney disease (CKD), and kidney failure. The occurrence of mosaicism may modulate the clinical course of the disease. Mosaicism is characterized by a few cell populations with different genomes.
View Article and Find Full Text PDFStem Cell Reports
January 2025
Department of Medicine, Division of Nephrology, Institute for Stem Cell & Regenerative Medicine, and Kidney Research Institute, University of Washington School of Medicine, Seattle, WA 98109, USA; Plurexa LLC, Seattle, WA 98109, USA. Electronic address:
The mammalian target of rapamycin (mTOR) pathway is a therapeutic target in polycystic kidney disease (PKD), but mTOR inhibitors such as everolimus have failed to show efficacy at tolerated doses in clinical trials. Here, we introduce AV457, a novel rapalog developed to reduce side effects, and assess its dose-dependent safety and efficacy versus everolimus in PKD1 and PKD2 human kidney organoids, which form cysts in a PKD-specific way. Both AV457 and everolimus reduce cyst growth over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!