This article reviews the development, current theories behind the mechanism of action and clinical use of subatmospheric pressure wound therapy with the vacuum-assisted closure device. An evolving list of indications for subatmospheric pressure therapy is discussed including its use in chronic wounds, traumatic wounds and orthopedic salvage, infected sternal wounds, management of the open abdomen, enterocutaneous fistulae, burn wounds, skin grafts and dermal substitutes, as well as systemic disease processes, such as myoglobinuria. The vacuum-assisted closure device Instill system is also reviewed, in which subatmospheric pressure therapy has been combined with the instillation of therapeutic solutions for the treatment of difficult infected wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1586/17434440.3.2.175DOI Listing

Publication Analysis

Top Keywords

subatmospheric pressure
16
vacuum-assisted closure
12
closure device
12
pressure wound
8
wound therapy
8
therapy vacuum-assisted
8
pressure therapy
8
wounds
5
subatmospheric
4
therapy
4

Similar Publications

Esophago-jejunal anastomoses fistula could be mortal. Currently there is a wide therapeutic measure ranging from conservative management, endoscopic therapy and surgery. Endoscopic management has been positioned above other strategies due to minimal invasion which improves survival and reduces mortality.

View Article and Find Full Text PDF

Investigation of NO emission characteristics from co-combustion of methane and ammonia at high-altitude areas.

J Hazard Mater

December 2024

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China; State Key Laboratory of Low-carbon Thermal Power Generation Technology and Equipment, Harbin, Heilongjiang 150001, China; National innovation Platform for Industry-Education Integration of Energy Storage Technology, Harbin Institute of technology, Harbin, Heilongjiang 150001, China.

Article Synopsis
  • High-altitude regions in China have a potential for renewable energy and ammonia production, leading to a proposed co-combustion strategy of methane and ammonia to lower carbon emissions.
  • A specialized combustion system was used to test how different ammonia mixing ratios, equivalence ratios, and pressures affect nitrogen oxide (NO) emissions in flames fueled by methane and ammonia.
  • Findings show that higher ammonia ratios increase NO emissions in stoichiometric flames but remain constant in fuel-rich flames at ratios above 10%. Sub-atmospheric pressure raises NO levels, especially in fuel-rich conditions, but doesn't significantly change nitrogen conversion pathways.
View Article and Find Full Text PDF

Deionized water is replacing fluorinated liquids as the preferred choice for two-phase immersion cooling in data centers. Yet, insufficient bubble removal capability at low saturated pressure is a key challenge hindering the widespread application. To solve this issue, this study employs non-ionic surfactant (Tween 20) and asymmetric structures (expanding microchannel) to enhance the boiling performances of deionized water under sub-atmospheric pressure.

View Article and Find Full Text PDF

The determination of critical closing pressure (Pcrit) is the diagnostic gold standard for assessing the severity of pharyngeal instability. Pcrit measurements are typically performed during natural nocturnal sleep (NREM Stage 2) in combination with polysomnography. However, determining Pcrit during sleep is time-consuming and impractical for routine use.

View Article and Find Full Text PDF

Vacuum swallowing is a unique method for improving the pharyngeal passage of a bolus by creating subatmospheric negative pressure in the esophagus. However, whether healthy individuals and other patients with dysphagia can reproduce vacuum swallowing remains unclear. Therefore, this study aimed to assess whether healthy individuals verified using high-resolution manometry (HRM) could reproduce vacuum swallowing and evaluate its safety using a swallowing and breathing monitoring system (SBMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!