Cleavage-stage embryos have an absolute requirement for pyruvate and lactate, but as the morula compacts, it switches to glucose as the preferred energy source to fuel glycolysis. Substrates such as glucose, amino acids, and lactate are moved into and out of cells by facilitated diffusion. In the case of lactate and pyruvate, this occurs via H+-monocarboxylate cotransporter (MCT) proteins. To clarify the role of MCT in development, transport characteristics for DL-lactate were examined, as were mRNA expression and protein localisation for MCT1 and MCT3, using confocal laser scanning immunofluorescence in freshly collected and cultured embryos. Blastocysts demonstrated significantly higher affinity for DL-lactate than zygotes (Km 20 +/- 10 vs 87 +/- 35 mmol lactate/l; P = 0.03 by linear regression) but was similar for all stages. For embryos derived in vivo and those cultured with glucose, MCT1 mRNA was present throughout preimplantation development, protein immunoreactivity appearing diffuse throughout the cytoplasm with brightest intensity in the outer cortical region of blastomeres. In expanding blastocysts, MCT1 became more prominent in the cytoplasmic cortex of blastomeres, with brightest intensity in the polar trophectoderm. Without glucose, MCT1 mRNA was not expressed, and immunoreactivity dramatically reduced in intensity as morulae died. MCT3 mRNA and immunoreactivity were not detected in early embryos. The differential expression of MCT1 in the presence or absence of glucose demonstrates that it is important in the critical regulation of pH and monocarboxylate transport during preimplantation development, and implies a role for glucose in the control of MCT1, but not MCT3, expression.

Download full-text PDF

Source
http://dx.doi.org/10.1530/rep.1.00953DOI Listing

Publication Analysis

Top Keywords

preimplantation development
12
cotransporter mct
8
mct1 mct3
8
glucose mct1
8
mct1 mrna
8
brightest intensity
8
glucose
7
mct1
6
glucose monocarboxylate
4
monocarboxylate cotransporter
4

Similar Publications

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

WDR74-Mediated Ribosome Biogenesis and Proteome Dynamics During Mouse Preimplantation Development.

Genes Cells

January 2025

Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.

Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.

View Article and Find Full Text PDF

Transcriptional activation of the embryonic genome (EGA) is a major developmental landmark enabling the embryo to become independent from maternal control. The magnitude and control of transcriptional reprogramming during this event across mammals remains poorly understood. Here, we developed Smart-seq+5' for high sensitivity, full-length transcript coverage and simultaneous capture of 5' transcript information from single cells and single embryos.

View Article and Find Full Text PDF

Background: Despite the use of Next-Generation Sequencing (NGS) as the gold standard for the diagnosis of rare diseases, its clinical implementation has been challenging, limiting the cost-effectiveness of NGS and the understanding, control and safety essential for decision-making in clinical applications. Here, we describe a personalized NGS-based strategy integrating precision medicine into a public healthcare system and its implementation in the routine diagnosis process during a five-year pilot program.

Methods: Our approach involved customized probe designs, the generation of virtual panels and the development of a personalized medicine module (PMM) for variant prioritization.

View Article and Find Full Text PDF

3-Nitropropionic acid exposure inhibits embyro development by disrupting mitochondrial function and inducing oxidative stress.

Chem Biol Interact

January 2025

Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu, 233000, China. Electronic address:

3-Nitropropionic acid (3-NP) is a naturally occurring mycotoxin produced by various species of fungi and plants. However, the potential impact of 3-NP exposure on reproductive health remains unclear. To address this gap, we conducted an in vitro study to investigate the toxic effects of 3-NP on the developmental processes of mouse embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!