Shewanella oneidensis COAG, a hyper-aggregating mutant of MR-1, was isolated from a rifampicin-challenged culture. Compared to the wild-type, COAG exhibited increased biofilm formation on glass carrier material. The role of surface-located proteins in the process of COAG auto-aggregation was confirmed by different proteolytic treatments of the aggregates. All of the tested proteolytic enzymes resulted in deflocculation within 3 h of incubation. In order to examine the altered expression of outer-membrane proteins in COAG, membrane-enriched cell preparations were analysed by proteomics and the protein pattern was compared to that of MR-1. From the proteomics results, it was hypothesized that the agglutination protein AggA, associated with the secretion of a putative RTX protein, was involved in the hyper-aggregating phenotype. These results were confirmed with a DNA microarray study of COAG versus MR-1. An insertional mutation in the S. oneidensis COAG aggA locus resulted in loss of the hyper-aggregating properties and the increased biofilm-forming capability. The insertional mutation resulted in strongly decreased attachment during the initial stage of biofilm formation. By complementing this mutation with the vector pCM62, expressing the aggA gene, this effect could be nullified and biofilm formation was restored to at least the level of the MR-1 wild-type.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.28204-0DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
increased biofilm
8
hyper-aggregating mutant
8
shewanella oneidensis
8
oneidensis coag
8
insertional mutation
8
coag
6
mr-1
5
agga
4
agga required
4

Similar Publications

Background: Oral infectious diseases, such as dental caries, periodontitis and periapical periodontitis, are often complicated by causative bacterial biofilm formation and significantly impact human oral health and quality of life. Bacteriophage (phage) therapy has emerged as a potential alternative with successful applications in antimicrobial trials. While therapeutic use of phages has been considered as effective treatment of some infectious diseases, related research focusing on oral infectious diseases is few and lacks attention.

View Article and Find Full Text PDF

Biomethanation is a crucial process occurring in natural and engineered systems which can reduce carbon dioxide to methane impacting the global carbon cycle. However, little is known about the effect of on-and-off gaseous provision and micronutrients on bioconversion. Here, anaerobic microbiomes underwent intermittent feeding with incremental starvations and selective metal supplementation to assess the impact of hydrogen and carbon dioxide availability on microbial physiology.

View Article and Find Full Text PDF

Aims: Enterococcus faecium is one of the most important opportunistic pathogens threatening human health worldwide. Resistance to vancomycin (VAN) is increasing at an alarming rate. Resurrecting antibiotics using a combination approach is a promising alternative avenue.

View Article and Find Full Text PDF

Enhancing fermented vegetable flavor with Lactobacillus plantarum and Rhodotorula mucilaginosa.

Food Res Int

January 2025

Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China. Electronic address:

The formation of flavor in fermented vegetables is directly associated with the interactions among the resident microbial strains. This study explored the cooperative dynamics between Lactobacillus plantarum and Rhodotorula mucilaginosa in a simulated cabbage juice system. The obtained results indicated that the co-cultivation of these strains accelerated fermentation kinetics and enhanced lactic acid production.

View Article and Find Full Text PDF

Combining antibacterial and wound healing features: Xanthan gum/guar gum 3D-printed scaffold tuned with hydroxypropyl-β-cyclodextrin/thymol and Zn.

Carbohydr Polym

March 2025

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:

Biofilm formation on biological and material surfaces represents a heavy health and economic burden for both patient and society. To contrast this phenomenon, medical devices combining antibacterial and pro-wound healing abilities are a promising strategy. In the present work, Xanthan gum/Guar gum (XG/GG)-based scaffolds were tuned with thymol and Zn to obtain wound dressings that combine antibacterial and antibiofilm properties and favour the healing process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!