Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Although oxygen therapy is of clear benefit in patients with severe chronic obstructive pulmonary disease (COPD), recent studies have shown that short-term supplementary oxygen may increase oxidative stress and inflammation within the airways.
Objective: We investigated whether systemic inflammation and oxidative stress at rest and during exercise in patients with COPD are influenced by supplemental oxygen.
Methods: Nine normoxemic, muscle-wasted patients with moderate to very severe COPD were studied. Plasma markers of systemic inflammation (leukocyte counts, interleukin 6 [IL-6]) and oxidative stress (lipid peroxidation, protein oxidation, antioxidant capacity) were measured after treatment with either supplemental oxygen (nasal, 4 L . min(-1)) or compressed air, both at rest (1 h treatment) and after submaximal exercise (40 W, constant work rate). In addition, free-radical production by neutrophils and ATP-degradation products were determined before and after exercise.
Results: Short-term oxygen breathing at rest did not influence systemic low-grade inflammation and oxidative stress. The IL-6 response to exercise was attenuated during cycling with supplemental oxygen. Exercise-induced lipid and protein oxidation were prevented by treatment with supplemental oxygen. This was associated with both decreased free-radical production by neutrophils and reduced formation of (hypo)xanthine and uric acid.
Conclusion: Short-term supplementary oxygen does not affect basal systemic inflammation and oxidative stress but prevents exercise-induced oxidative stress in normoxemic, muscle-wasted patients with COPD, and attenuates plasma IL-6 response. Inhibition of neutrophil activation and ATP degradation appears to be involved in this effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/rccm.200512-1957OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!