The purpose of this study was to determine the effect of acute increases in pulmonary vascular pressures, caused by the application of lower-body positive pressure (LBPP), on exercise alveolar-to-arterial PO2 difference (A-aDO2), anatomical intrapulmonary (IP) shunt recruitment, and ventilation. Eight healthy men performed graded upright cycling to 90% maximal oxygen uptake under normal conditions and with 52 Torr (1 psi) of LBPP. Pulmonary arterial (PAP) and pulmonary artery wedge pressures (PAWP) were measured with a Swan-Ganz catheter. Arterial blood samples were obtained from a radial artery catheter, cardiac output was calculated by the direct Fick method, and anatomical IP shunt was determined by administering agitated saline during continuous two-dimensional echocardiography. LBPP increased both PAP and PAWP while upright at rest, and at all points during exercise (mean increase in PAP and PAWP 3.7 and 4.0 mmHg, respectively, P<0.05). There were no differences in exercise oxygen uptake or cardiac output between control and LBPP. Despite the increased PAP and PAWP with LBPP, A-aDO2 was not affected. In the upright resting position, there was no evidence of shunt in the control condition, whereas LBPP caused shunt in one subject. At the lowest exercise workload (75 W), shunt occurred in three subjects during control and in four subjects with LBPP. LBPP did not affect IP shunt recruitment during subsequent higher workloads. Minute ventilation and arterial PcO2 were not consistently affected by LBPP. Therefore, small acute increases in pulmonary vascular pressures do not widen exercise A-aDO2 or consistently affect IP shunt recruitment or ventilation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01484.2005DOI Listing

Publication Analysis

Top Keywords

acute increases
8
increases pulmonary
8
pulmonary vascular
8
vascular pressures
8
pap pawp
8
pulmonary
5
pressures exercise
4
exercise pulmonary
4
pulmonary gas
4
gas exchange
4

Similar Publications

BACKGROUND This study aimed to analyze the risk factors of central nervous system (CNS) infection caused by reactivation of varicella zoster virus (VZV) and provide reference for the prevention and early diagnosis of VZV-associated CNS infection. MATERIAL AND METHODS A prospective study was conducted on 1030 patients with acute herpes zoster (HZ) admitted to our hospital from January 2021 to June 2023. According to clinical manifestations and auxiliary examinations, they were divided into HZ group of 990 patients and VZV-associated CNS infection group of 40 patients.

View Article and Find Full Text PDF

This study explored the early diagnosis and prognostic value of copeptin in non-ST-segment elevation acute coronary syndrome (NSTE-ACS). 171 patients with chest pain or myocardial ischemia symptoms were enrolled. Patients with NSTE-ACS were further divided into the non-ST-elevation myocardial infarction (NSTEMI) and unstable angina (UA).

View Article and Find Full Text PDF

This study investigated the incidence of new-onset cardiovascular disorders up to 3.5 years post SARS-CoV-2 infection for 56,400 individuals with COVID-19 and 1,093,904 contemporary controls without COVID-19 in the Montefiore Health System (03/11/2020 to 07/01/2023). Outcomes were new incidence of major adverse cardiovascular event (MACE), arrhythmias, inflammatory heart disease, thrombosis, cerebrovascular disorders, ischemic heart disease and other cardiac disorders between 30 days and (up to) 3.

View Article and Find Full Text PDF

The aim of this study was to evaluate how COVID-19 affected acute stroke care and outcome in patients with acute ischemic or hemorrhagic stroke. We performed a retrospective analysis on patients who were admitted with acute ischemic (AIS) or hemorrhagic (ICH) stroke from September 2020 to May 2021 with and without COVID-19. We recorded demographic and clinical data, imaging parameters, functional outcome and mortality at one year.

View Article and Find Full Text PDF

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!