Although oocytes of many teleost fish, especially marine species, are subjected to a hydration process during meiotic maturation, which leads to an important volume increase, no noticeable hydration of the preovulatory oocyte has ever been reported in rainbow trout (Oncorhynchus mykiss). In the present study, oocyte water content and dry mass were monitored using consecutive samples taken in vivo from the same female rainbow trout, from 4-5 days prior to ovulation to up to 7 days post-ovulation. In addition, yolk protein electrophoretic patterns were compared between oocytes sampled prior to germinal vesicle breakdown (GVBD) and unfertilized eggs. Furthermore, the effect of the maturation-inducing steroid (17,20beta-dihydroxy-4-pregnen-3-one, 17,20beta-P), cortisol and 11-deoxycorticosterone (DOC) on oocyte dry and wet masses, as well as GVBD occurrence was assessed in vitro. Finally, mRNA expression profiles of glucocorticoid and mineralocorticoid receptors as well as 11beta-hydroxysteroid dehydrogenase (11beta-HSD) were monitored in the periovulatory ovary by real-time PCR. Both in vivo and in vitro data showed, for the first time in rainbow trout, that a significant oocyte hydration occurs during oocyte maturation. In addition, an intra-oocyte dry matter increase was reported in vivo during the periovulatory period. However, yolk protein migration patterns were similar in preGVBD oocytes and unfertilized eggs, suggesting that no or little yolk proteolysis occurs during oocyte maturation. We also showed that oocyte hydration can be induced in vitro by 17,20beta-P and cortisol but not by DOC. In contrast, GVBD was only observed after 17,20beta-P stimulation. Finally, real-time PCR analysis showed an up-regulation of 11beta-HSD and glucocorticoid receptor 2 transcripts in the ovary at the time of oocyte maturation. Together, these results suggest that cortisol could participate in the control of oocyte hydration and possibly in other periovulatory ovarian functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.02094 | DOI Listing |
J Fish Dis
January 2025
Fish Disease Research Unit, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany.
Piscine orthoreovirus-1 and 3 (PRV-1, PRV-3) cause highly prevalent infection in cultured salmonids and can induce heart and skeletal muscle inflammation (HSMI) resulting in economic losses in aquaculture. However, to date, PRV-1 and PRV-3 have withstood replication in continuous cell lines. In this study, we used beating heart cell cultures obtained from different developmental stages of rainbow trout (Oncorhynchus mykiss) (RTC-L and RTC-A) and tested their ability to sustain replication of PRV-1 and PRV-3.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA.
Climate change and biological invasions are affecting natural ecosystems globally. The effects of these stressors on native species' biogeography have been studied separately, but their combined effects remain overlooked. Here, we develop a framework to assess how climate change influences both the range and niche overlap of native and non-native species using ecological niche models.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada.
There is growing interest in transcriptomic points of departure (tPOD) values from in vitro experiments as an alternative to animal test method. The study objective was to calculate tPODs in rainbow trout gill cells (RTgill-W1 following OECD 249) exposed to pesticides, and to evaluate how these values compare to fish acute and chronic toxicity data. Cells were exposed to one fungicide (chlorothalonil), ten herbicides (atrazine, glyphosate, imazethapyr, metolachlor, diquat, s-metolachlor, AMPA, dicamba, dimethenamid-P, metribuzin), eight insecticides (chlorpyrifos, diazinon, permethrin, carbaryl, clothianidin, imidacloprid, thiamethoxam, chlorantraniliprole), and OECD 249 positive control 3,4-dichloroaniline.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
The contribution of the gut to the ingestion, production, absorption, and excretion of the extra ammonia and urea-N associated with feeding ("exogenous" fraction) has received limited prior attention. Analysis of commercial pellet food revealed appreciable concentrations of ammonia and urea-N. Long term satiation-feeding increased whole trout ammonia and urea-N excretion rates by 2.
View Article and Find Full Text PDFBiol Lett
January 2025
Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar 39231, Sweden.
Vertebrate brain function is particularly sensitive to the effects of hypoxia, with even brief periods of oxygen deprivation causing significant brain damage and impaired cognitive abilities. This study is the first to investigate the cognitive consequences of hypoxia in fish, specifically induced by exhaustive exercise and air exposure, conditions commonly encountered during catch-and-release (C&R) practices in recreational fishing. Angling exerts substantial pressure on inland fish populations, underscoring the need for sustainable practices like C&R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!