Negative regulation of LRP6 function by casein kinase I epsilon phosphorylation.

J Biol Chem

Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA.

Published: May 2006

Wnt signaling acts in part through the low density lipoprotein receptor-related transmembrane proteins LRP5 and LRP6 to regulate embryonic development and stem cell proliferation. Up-regulated signaling is associated with many forms of cancer. Casein kinase I epsilon (CKIepsilon) is a known component of the Wnt-beta-catenin signaling pathway. We find that CKIepsilon binds to LRP5 and LRP6 in vitro and in vivo and identify three CKIepsilon-specific phosphorylation sites in LRP6. Two of the identified phosphorylation sites, Ser1420 and Ser1430, influence Wnt signaling in vivo, since LRP6 with mutation of these sites is a more potent activator of both beta-catenin accumulation and Lef-1 reporter activity. Whereas Wnt3a regulates CKIepsilon kinase activity, LRP6 does not, placing CKIepsilon upstream of LRP6. Mutation of LRP6 Ser1420 and Ser1430 to alanine strengthens its interaction with axin, suggesting a mechanism by which CKIepsilon may negatively regulate Wnt signaling. The role of CKIepsilon is therefore more complex than was previously appreciated. Generation of active CKIepsilon may induce a negative feedback loop by phosphorylation of sites on LRP5/6 that modulate axin binding and hence beta-catenin degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M510580200DOI Listing

Publication Analysis

Top Keywords

wnt signaling
12
phosphorylation sites
12
lrp6
8
casein kinase
8
kinase epsilon
8
lrp5 lrp6
8
ser1420 ser1430
8
lrp6 mutation
8
ckiepsilon
7
signaling
5

Similar Publications

Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination.

Curr Cardiol Rep

January 2025

Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.

Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.

Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.

View Article and Find Full Text PDF

In neurons, the acquisition of a polarized morphology is achieved upon the outgrowth of a single axon from one of several neurites. Small extracellular vesicles (sEVs), such as exosomes, from diverse sources are known to promote neurite outgrowth and thus may have therapeutic potential. However, the effect of fibroblast-derived exosomes on axon elongation in neurons of the central nervous system under growth-permissive conditions remains unclear.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Emerging Combinatorial Drug Delivery Strategies for Breast Cancer: A Comprehensive Review.

Curr Drug Targets

January 2025

Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.

Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.

View Article and Find Full Text PDF

Diseases affecting bone encompass a spectrum of disorders, from prevalent conditions such as osteoporosis and Paget's disease, collectively impacting millions, to rare genetic disorders including Fibrodysplasia Ossificans Progressiva (FOP). While several classes of drugs, such as bisphosphonates, synthetic hormones, and antibodies, are utilized in the treatment of bone diseases, their efficacy is often curtailed by issues of tolerability and high incidence of adverse effects. Developing therapeutic agents for bone diseases is hampered by the fact that numerous pathways regulating bone metabolism also perform pivotal functions in other organ systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!