The vasoactive hormone angiotensin II (Ang II) probably triggers inflammatory cardiovascular diseases by activating transcription factors such as NF-kappaB. We describe here a novel mode of NF-kappaB activation in cultured vascular smooth muscle cells exposed to Ang II. Ang II treatment resulted in an increase in the phosphotransferase activity of the IKK complex, which was mediated through the AT1 receptor subtype. The typical phosphorylation and proteasome-dependent degradation of the NF-kappaB inhibitor IkappaBalpha were not observed. Rather, Ang II treatment of vascular smooth muscle cells led to the phosphorylation of p65 on serine 536, a signal detected in both the cytoplasm and the nuclear compartments. The use of pharmacological inhibitors that inhibit the activation of MEK by Ang II revealed that phosphorylation of p65 on serine 536 did not require the MEK-ERK-RSK signaling pathway. On the other hand, specifically targeting the IKKbeta subunit of the IKK complex by overexpression of a dominant negative version of IKKbeta (IKKbeta K44A) or silencing RNA technology demonstrated that the IKKbeta subunit of the IKK complex was responsible for the detected phosphoserine 536 signal in Ang II-treated cells. Characterization of the signaling pathway leading to activation of the IKK complex by Ang II revealed that neither epidermal growth factor receptor transactivation nor the phosphatidylinositol 3-kinase-AKT signaling cascade were involved. Collectively, our data demonstrate that the proinflammatory activity of Ang II is independent of the classical pathway leading to IkappaBalpha phosphorylation and degradation but clearly depends on the recruitment of an IKK complex signaling cascade leading to phosphorylation of p65 on serine 536.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M512815200DOI Listing

Publication Analysis

Top Keywords

ikk complex
20
phosphorylation p65
12
p65 serine
12
serine 536
12
ang
8
vascular smooth
8
smooth muscle
8
muscle cells
8
ang treatment
8
536 signal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!