Supporting a co-translational model of protein import into mitochondria, we have previously shown that ribosome-nascent chain complexes (RNCs) specifically bind to mitochondria. When producing RNCs using the rabbit reticulocyte lysate in vitro translation system, it was necessary to maximize ribosome loading with truncated nascent proteins because it had a direct impact on RNC binding. We describe here the optimal conditions for preparing RNCs. We show that translation temperature and reaction time are two critical factors, with 30 degrees Celsius and 15min being optimal, respectively. We also show that transcription reactions can be used directly in the translation reaction to create RNCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mito.2006.01.001 | DOI Listing |
Nat Commun
January 2025
Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.
View Article and Find Full Text PDFOpen Biol
November 2024
The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China.
The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish mutants to investigate the function of Cebpa in the HSPC compartment.
View Article and Find Full Text PDFbioRxiv
August 2024
Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
The surveillance of translation is critical for the fitness of organisms from bacteria to humans. Ribosome-associated Quality Control (RQC) is a surveillance mechanism that promotes the elimination of truncated polypeptides, byproducts of ribosome stalling during translation. In canonical mammalian RQC, NEMF binds to the large ribosomal subunit and recruits the E3 ubiquitin ligase Listerin, which marks the nascent-chains for proteasomal degradation.
View Article and Find Full Text PDFMolecules
June 2024
Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a crucial tumor suppressor protein with frequent mutations and alterations. Although protein therapeutics are already integral to numerous medical fields, their potential remains nascent. This study aimed to investigate the impact of stable, unphosphorylated recombinant human full-length PTEN and its truncated variants, regarding their tumor suppression activity with multiwalled-carbon nanotubes (MW-CNTs) as vehicles for their delivery in breast cancer cells (T-47D, ZR-75-1, and MCF-7).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!