Thyroid hormones enhance the metabolic rate and the aerobic metabolism favoring oxidative stress, which is accompanied by induction of damage to cellular macromolecules including the DNA. The aim of the present study was to investigate the ability of thyroxine to induce sister chromatid exchange and micronuclei, and to modulate cell-cycle kinetics in cultured human lymphocytes. Eight experimental concentrations of thyroxine were used, ranging from 2 x 10(-9) to 0.5 x 10(-4)M. Treatment with thyroxine increased the frequency of SCE per cell at the higher concentrations (1.5 x 10(-6), 0.5 x 10(-5), 1.5 x 10(-5) and 0.5 x 10(-4)M). On the other hand, there were no significant aneugenic and/or clastogenic effects observed in the cytokinesis-block micronucleus assay. The results show that thyroxine acted as a relatively weak clastogen compared with the positive control N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In addition to the genotoxic effects, two high concentrations of thyroxine decreased the mitotic index and caused cell-cycle delay. In conclusion, thyroxine exhibited weak clastogenic effects only at high concentrations. Therefore, effects in humans might appear in cases of acute thyroxine overdose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrgentox.2005.11.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!