PI3K and ERK 1-2 regulate early stages during head regeneration in hydra.

Dev Growth Differ

Departamento de Bioquimica, CINVESTAV-IPN, Queretaro, Mexico.

Published: February 2006

Different signaling systems coordinate and regulate the development of a multicellular organism. In hydra, the canonical Wnt pathway and the signal transduction pathways mediated by PKC and Src regulate early stages of head formation. In this paper, we present evidence for the participation of a third pathway, the PI3K-PKB pathway, involved in this process. The data presented here are consistent with the participation of ERK 1-2 as a point of convergence for the transduction pathways mediated by PKC, Src and PI3K for the regulation of the regeneration of the head in hydra. The specific developmental point regulated by them appears to be the commitment of tissue at the apical end of the regenerate to form the head organizer.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-169X.2006.00847.xDOI Listing

Publication Analysis

Top Keywords

erk 1-2
8
regulate early
8
early stages
8
stages head
8
transduction pathways
8
pathways mediated
8
mediated pkc
8
pkc src
8
pi3k erk
4
1-2 regulate
4

Similar Publications

This study investigated the effects of bisphenol A (BPA) and the involvement of nuclear estrogen receptors (ESR) on testicular energy metabolism and spermatogenesis in zebrafish. Testes were incubated with DMSO, 10 pM or 10μM BPA for 6 or 72h, with some samples pre-incubated with the ESRα/β antagonist ICI 182,780. Gene and protein expressions were analyzed using real-time PCR and Western blot, respectively.

View Article and Find Full Text PDF

Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro.

View Article and Find Full Text PDF

extract ameliorates motor dysfunc-tion in mouse Parkinsons disease model through inhibiting neuronal apoptosis.

Zhejiang Da Xue Xue Bao Yi Xue Ban

January 2025

School of Medicine, Hangzhou City University, Zhejiang Provincial Key Laboratory of Novel Targets and Drug Study for Neural Repair, Hangzhou 310015, China.

Objectives: To investigate the protective effects and underlying mechanisms of extract on motor dysfunction in mouse model of Parkinson's disease (PD).

Methods: Eighty C57BL/6 male mice were randomly divided into five groups: control group, PD model group, levodopa treatment group (positive control group), low-dose GP treatment group (LD-GP group), and high-dose GP treatment group (HD-GP group), with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata in mice of last 5 groups.

View Article and Find Full Text PDF

The search for new anticancer compounds is a major focus for researchers in chemistry, biology, and medicine. Cancer affects people of all ages and regions, with rising incidence rates. It does not discriminate by age or gender, making it a significant threat to humanity.

View Article and Find Full Text PDF

Betagenin ameliorates diabetes by inducing insulin secretion and β-cell proliferation.

J Biol Chem

January 2025

Division of Experimental Animal, Hidaka Branch, Biomedical Research Center, Saitama Medical University, Saitama, Japan; Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. Electronic address:

Recent success with the use of glucagon-like peptide-1 (GLP-1) receptor analogs and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of patients with diabetes has highlighted the role of the intestine as an endocrine organ. Gut-derived hormones, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and ghrelin, have important roles in the control of energy metabolism and food intake, and are associated with the metabolic syndrome. In this study, we isolated and identified a new intestine-derived hormone, betagenin, and showed that it stimulates insulin secretion and β-cell proliferation and suppresses β-cell apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!