Theoretical model of vibrational interactions in hydrogen-bonded salicylic acid dimer is presented which takes into account the adiabatic couplings between high- and low-frequency O-H and O...O stretching vibrations, resonance interactions between both intermolecular hydrogen bonds and between inter- and intramolecular hydrogen bonds, and Fermi resonance between the O-H stretching fundamental and the first overtone of the O-H in-plane bending vibrations. The model is used for theoretical simulation of the nu(s) stretching bands of salicylic acid and its OD derivative at 300 K. The effect of deuteration is successfully reproduced by our model. Infrared, far infrared, Raman, and low-frequency Raman spectra of the polycrystalline salicylic acid and its deuterated derivative have been measured. The geometry and experimental frequencies are compared with the results of density-functional theory calculations performed at the B3LYP6-31 ++ G**, B3LYP/cc-pVTZ, B3PW916-31 ++ G**, and B3PW91/cc-pVTZ levels. O-H, O-D, and O...O stretching frequencies are used in theoretical simulation of the nu(s) stretching bands.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2167355DOI Listing

Publication Analysis

Top Keywords

salicylic acid
16
hydrogen bonds
12
theoretical model
8
o-h stretching
8
theoretical simulation
8
simulation nus
8
nus stretching
8
stretching bands
8
stretching
5
theoretical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!