A series of anthraquinone-linked DNA oligonucleotides was prepared and the efficiency of long-distance radical cation migration was measured. In one set of oligonucleotides, two GG steps are separated by either a TATA or an ATAT bridge. In these two compounds, the efficiency of radical cation migration from GG to GG differs by more than an order of magnitude. Replacement of the thymines in the TATA or ATAT bridges with 3-methyl-2-pyridone (t, a thymine analog) results in the much more efficient radical cation migration across the bridge in both cases. This is attributed to a decrease in the oxidation potential of t to a value below that of A. In contrast, replacement of the thymines in the TATA or ATAT bridges with difluorotoluene (f, a thymine analog with high oxidation potential) does not measurably affect radical cation migration. These findings are readily accommodated by the phonon-assisted polaron-hopping mechanism for long-distance charge transfer in duplex DNA and indicate that DNA in solution behaves as a polaronic semiconductor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b505550d | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
Organic redox systems that can undergo oxidative and reductive (ambipolar) electron transfer are elusive yet attractive for applications across synthetic chemistry and energy science. Specifically, the use of ambipolar redox systems in proton-coupled electron transfer (PCET) reactions is largely unexplored but could enable "switchable" reactivity wherein the uptake and release of hydrogen atoms are controlled using a redox stimulus. Here, we describe the synthesis and characterization of an ambipolar functionalized terthiophene (TTH) bearing methyl thioether and phosphine oxide groups that exhibits switchable PCET reactivity.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
This report describes the design, development, and optimization of an electrochemical deoxyfluorination of arenes using a tetrafluoropyridine-derived leaving group. NEt·3HF serves as the fluoride source, and the reactions are conducted using either constant potential or constant current electrolysis in an undivided electrochemical cell. Mechanistic studies support a net oxidative pathway, in which initial single-electron oxidation generates a radical cation intermediate that is trapped by fluoride.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 402, Taiwan.
Novel coumarin-triphenyliminophosphorane (TPIPP) fluorophores, synthesized via a nonhydrolytic Staudinger reaction, exhibit remarkable redox-responsive optical properties. Upon chemical and electrochemical oxidation, these compounds display a hypsochromic shift in absorption from 430 to 350 nm, accompanied by up to 11-fold fluorescence enhancement under 405 nm excitation. The fluorescence switching occurs at an electrochemical oxidation potential of approximately +2.
View Article and Find Full Text PDFThe selective amination of aromatic C-H bonds is a powerful strategy to access aryl amines, functionalities found in many pharmaceuticals and agrochemicals. Despite advances in the field, a platform for the direct, selective C-H amination of electronically diverse (hetero)arenes, particularly electron-deficient (hetero)arenes, remains an unaddressed fundamental challenge. In addition, many (hetero)arenes present difficulty in common selective pre-functionalization reactions, such as halogenation , or metal-catalyzed borylation and silylation .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!