AI Article Synopsis

  • - Erythropoietin (Epo) is effective in treating anemia caused by chronic diseases or chemotherapy, particularly through a specific signaling pathway involving the Epo receptor and Stat5.
  • - Mice with a mutated Epo receptor (EpoR-HM) developed severe anemia, and their bone marrow cells were less capable of producing new red blood cells; however, restoring the original signaling pathway improved this process.
  • - The study emphasizes that successful stress erythropoiesis relies on precise signaling at different stages of erythroblast development, highlighting the roles of both EpoR-PY343 and supportive factors like SCF and oncostatin-M.

Article Abstract

Anemia due to chronic disease or chemotherapy often is ameliorated by erythropoietin (Epo). Present studies reveal that, unlike steady-state erythropoiesis, erythropoiesis during anemia depends sharply on an Epo receptor-phosphotyrosine-343-Stat5 signaling axis. In mice expressing a phosphotyrosine-null (PY-null) Epo receptor allele (EpoR-HM), severe and persistent anemia was induced by hemolysis or 5-fluorouracil. In short-term transplantation experiments, donor EpoR-HM bone marrow cells also failed to efficiently repopulate the erythroid compartment. In each context, stress erythropoiesis was rescued to WT levels upon the selective restoration of an EpoR PY343 Stat5-binding site (EpoR-H allele). As studied using a unique primary culture system, EpoR-HM erythroblasts exhibited marked stage-specific losses in Epo-dependent growth and survival. EpoR-H PY343 signals restored efficient erythroblast expansion, and the selective Epo induction of the Stat5 target genes proviral integration site-1 (Pim-1) and oncostatin-M. Bcl2-like 1 (Bcl-x), in contrast, was not significantly induced via WT-EpoR, EpoR-HM, or EpoR-H alleles. In Kit+ CD71+ erythroblasts, EpoR-PY343 signals furthermore enhanced SCF growth effects, and SCF modulation of Pim-1 kinase and oncostatin-M expression. In maturing Kit- CD71+ erythroblasts, oncostatin-M exerted antiapoptotic effects that likewise depended on EpoR PY343-mediated events. Stress erythropoiesis, therefore, requires stage-specific EpoR-PY343-Stat5 signals, some of which selectively bolster SCF and oncostatin-M action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1386105PMC
http://dx.doi.org/10.1172/JCI25227DOI Listing

Publication Analysis

Top Keywords

stress erythropoiesis
12
cd71+ erythroblasts
8
erythropoiesis
5
signals
4
signals stress
4
erythropoiesis integrated
4
integrated erythropoietin
4
erythropoietin receptor-phosphotyrosine-343-stat5
4
receptor-phosphotyrosine-343-stat5 axis
4
axis anemia
4

Similar Publications

Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.

View Article and Find Full Text PDF

Brachycephalic breeds suffer from respiratory distress known as brachycephalic obstructive airway syndrome (BOAS) and the multiple comorbidities associated with it. Targeted breeding toward a more BOAS-free phenotype requires accurate and least invasive detection of BOAS severity grades that are accessible and accepted by the breeders and kennel clubs. This study aimed to compare the-outcome of morphometric anatomical examination with functional tests such as exercise tests and plethysmography for the detection of BOAS severity in a group of 84 French Bulldogs.

View Article and Find Full Text PDF

Our knowledge of which bone marrow cells affect red cell production is still incomplete. To explore the role of osteocytes in the process we performed bulk RNAseq of osteocytes isolated from control and phlebotomized mice. The top-upregulated gene following phlebotomy was , erythroferrone ( ).

View Article and Find Full Text PDF

Therapeutic Potential of Carbon Dots Derived from Phytochemicals as Nanozymes Exhibiting Superoxide Dismutase Activity for Anemia.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Anemia is a potentially life-threatening blood disorder caused by an insufficient erythroblast volume in the circulatory system. Self-renewal failure of erythroblast progenitors is one of the key pathological factors leading to erythroblast deficiency. However, there are currently no effective drugs that selectively target this process.

View Article and Find Full Text PDF
Article Synopsis
  • Aplastic anemia (AA) is a serious blood condition with few treatment options, characterized by halted blood cell production and increased cell death due to oxidative stress.
  • Researchers discovered unique carbon dots derived from donkey-hide gelatin (G-CDs) that can stimulate blood cell production and reduce oxidative stress, effectively promoting the recovery of blood cells in AA.
  • Administered to AA mice after chemotherapy, G-CDs significantly increased red blood cell levels and improved overall blood function more effectively than the current treatment, erythropoietin (EPO), without negative side effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!