Lentiviral vectors are promising tools for CNS gene transfer since they efficiently transduce the cells of the nervous system in vivo. In this study, we have investigated the transduction efficiency of lentiviral vectors pseudotyped with Ross River virus glycoprotein (RRV-G) (RRV-G-pseudotyped lentiviral vectors (RRV-LV)). The RRV is an alphavirus with an extremely broad host range, including the cells of the central nervous system. Previous studies have shown that lentiviral vectors can be efficiently pseudotyped with this envelope protein and have demonstrated promising features of such vectors, including the possibility to establish stable producer cell lines. After injection of RRV-LV expressing green fluorescent protein into different structures in the rat brain we found efficient transduction of both neurons and glial cells. By using two cell-type-specific promoters, neuron-specific enolase and human glial fibrillary acidic protein, we demonstrated cell-specific transgene expression in the desired cell type. Ross River virus glycoprotein-pseudotyped lentiviral vectors also transduced human neural progenitor cells in vitro, showing that receptors for the RRV-G are present on human neural cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.gt.3302701 | DOI Listing |
Mol Biol Cell
January 2025
Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and siRNA-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection.
View Article and Find Full Text PDFJ Occup Environ Med
January 2025
Department of Occupational and Environmental Health, University of California Irvine, Irvine, CA 92697, USA.
J Occup Environ Med
January 2025
National Clinician Consultation Center, Department of Family and Community Medicine, University of California San Francisco.
Invest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
Unlabelled: The impact of cancer driving mutations in regulating immunosurveillance throughout tumor development remains poorly understood. To better understand the contribution of tumor genotype to immunosurveillance, we generated and validated lentiviral vectors that create an epi-allelic series of increasingly immunogenic neoantigens. This vector system is compatible with autochthonous Cre-regulated cancer models, CRISPR/Cas9-mediated somatic genome editing, and tumor barcoding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!