Involvement of Akt in preconditioning-induced tolerance to ischemia in PC12 cells.

J Cereb Blood Flow Metab

1Stroke Branch, Department of Health and Human Services, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4476, USA.

Published: October 2006

The serine-threonine protein kinase Akt has been identified as an important mediator of cell survival able to counteract apoptotic stimuli. However, hibernation, a model of natural tolerance to cerebral ischemia, is associated with downregulation of Akt. We previously established a model of ischemic tolerance in a PC12 cell line and using this model we now addressed the question whether ischemic tolerance also downregulates Akt in PC12 cells. Kinetic studies showed decreased Akt phosphorylation in tolerized cells. Similarly, phosphorylated levels of three major targets of Akt and well-known proapoptotic factors, the glycogen synthase kinase 3 (GSK-3), a Forkhead family member, FoxO4, and the protein murine double minute 2 (MDM2), all inactivated upon phosphorylation by Akt, were decreased in preconditioned cells. In addition, pharmacological blockade of the phosphoinositide 3-kinase (PI3K)/Akt pathway reduced cell death induced by oxygen and glucose deprivation (OGD) and increased the protective effect of preconditioning (PC). Furthermore, decreasing availability of P-Akt by transfecting PC12 cells with constructs of inactive Akt also resulted in protection against OGD and potentiation of the protective effect of PC. Depending on the environment, GSK-3, FOXO-4, and MDM2 can trigger apoptotic responses or cell cycle arrest, and thus, in a situation of reduced energy, driving the cells into a state of quiescence might be neuroprotective. This work suggests that in the context of tolerance downregulation of Akt is beneficial.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855183PMC
http://dx.doi.org/10.1038/sj.jcbfm.9600286DOI Listing

Publication Analysis

Top Keywords

pc12 cells
12
akt
8
downregulation akt
8
ischemic tolerance
8
cells
6
tolerance
5
involvement akt
4
akt preconditioning-induced
4
preconditioning-induced tolerance
4
tolerance ischemia
4

Similar Publications

In situ biosensing for cell viability and drug evaluation in 3D extracellular matrix cultures: Applications in cytoprotection of oxidative stress injury.

Talanta

January 2025

Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

The rise of extracellular matrix (ECM)-supported three-dimensional (3D) cell culture systems which bridge the gap between in vitro culture and in vivo living tissue for pharmacological models has increased the need for simple and robust cell viability assays. This study presents the development of an effective biosensing assay for in situ monitoring of the catecholamine neurotransmitter exocytosis levels for cell viability assessment within complicated cell-encapsulated hydrogel milieu. Firstly, the biosensing assay demonstrated the distinction among four pheochromocytoma (PC12) cell lines with varying degrees of differentiation and the discrepancy in cellular neurosecretory capacity between two-dimensional (2D) monolayer and 3D agarose hydrogel culture conditions, accompanied by morphological distinctions.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.

View Article and Find Full Text PDF

Background: Fibroblast growth factor 21 (FGF21) and Methyltransferase-like 14 (METTL14) have been identified to be involved in spinal cord injury (SCI). However, whether FGF21 functioned in SCI via METTL14-induced N6-methyladenosine (m6A) modification remains unclear.

Materials And Methods: PC12 cells were exposed to lipopolysaccharide (LPS) in vitro.

View Article and Find Full Text PDF

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.

Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!