Planetary nebulae often have asymmetric shapes, even though their progenitor stars were symmetric; this structure could be the result of collimated jets from the evolved stars before they enter the planetary nebula phase. Theoretical models have shown that magnetic fields could be the dominant source of jet-collimation in evolved stars, just as these fields are thought to collimate outflows in other astrophysical sources, such as active galactic nuclei and proto-stars. But hitherto there have been no direct observations of both the magnetic field direction and strength in any collimated jet. Here we report measurements of the polarization of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A (at a distance of 2.6 kpc from the Sun), which is undergoing rapid evolution into a planetary nebula. The masers occur in two clusters at opposing tips of the jets, approximately 1,000 au from the star. We conclude from the data that the magnetic field is indeed collimating the jet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature04466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!