AI Article Synopsis

  • The study investigates whether dendritic cells from HIV-1 infected individuals can help improve the immune response in CD4 T-cells.
  • Researchers isolated these cells from people at different stages of HIV-1 infection and compared them to healthy volunteers, ensuring the cells had similar properties and could stimulate T-cell activity.
  • Results show that dendritic cells from HIV-1 infected individuals can enhance T-cell responses to various antigens, suggesting that targeting these cells in immunization strategies could improve protective immune responses against HIV.

Article Abstract

Objectives: The study tests the hypothesis that monocyte derived dendritic cells from HIV-1 infected individuals are normal and can restore impaired CD4 T-cell antigen specific responses.

Design: Monocyte derived dendritic cells were isolated from individuals at three different stages of HIV-1 infection with a wide spectrum of viral load and CD4 T-cell counts, and from healthy volunteers. The cell surface phenotype and allogeneic stimulatory potential of these dendritic cells was documented. CD4 T-cell responses to HIV p24, tetanus toxoid and purified protein derivative were measured using either unfractionated peripheral blood mononuclear cells, or purified dendritic cell/T-cell cultures.

Results: Dendritic cells from all three HIV-1 infected groups did not differ from each other or from healthy volunteers in terms of cell surface phenotype or allogeneic stimulatory potential using T cells from healthy volunteers. Dendritic cells from immunosuppressed antiretroviral naive individuals enhanced the autologous recall proliferative responses both to HIV-1 p24, and third party antigens tetanus toxoid and purified protein derivative, both in terms of the proportion of responding individuals, and median proliferation.

Conclusion: Antigen presentation by dendritic cells partially restores impaired antigen specific CD4 T-cell responses associated with HIV-1 infection. Immunization strategies which target dendritic cells may therefore offer significant advantages in the ability to stimulate HIV-specific protective immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.aids.0000202649.95655.8cDOI Listing

Publication Analysis

Top Keywords

dendritic cells
32
cd4 t-cell
20
monocyte derived
12
derived dendritic
12
hiv-1 infected
12
t-cell responses
12
healthy volunteers
12
cells
10
dendritic
9
cells hiv-1
8

Similar Publications

Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production.

View Article and Find Full Text PDF

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a very rare and aggressive hematologic malignancy, arising from plasmacytoid dendritic cells (pDCs). BPDCN frequently has, at least initially, exclusively cutaneous presentation. We present a 45-year-old woman with a 3-month history of rapidly evolving violaceous patches, infiltrated plaques, and bruise-like tumefactions, disseminated on her face and upper trunk.

View Article and Find Full Text PDF

Unlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!